鞍点问题的随机预条件Douglas-Rachford分裂方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yakun Dong, Kristian Bredies, Hongpeng Sun
{"title":"鞍点问题的随机预条件Douglas-Rachford分裂方法","authors":"Yakun Dong, Kristian Bredies, Hongpeng Sun","doi":"10.1137/23m1622490","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1691-1728, August 2025. <br/> Abstract. In this article, we propose and study a stochastic and relaxed preconditioned Douglas–Rachford splitting method to solve saddle-point problems that have separable dual variables. We prove the almost sure convergence of the iteration sequences in Hilbert spaces for a class of convex-concave and nonsmooth saddle-point problems. We also provide the sublinear convergence rate for the ergodic sequence concerning the expectation of the restricted primal-dual gap functions. Numerical experiments show the high efficiency of the proposed stochastic and relaxed preconditioned Douglas–Rachford splitting methods.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stochastic Preconditioned Douglas–Rachford Splitting Method for Saddle-Point Problems\",\"authors\":\"Yakun Dong, Kristian Bredies, Hongpeng Sun\",\"doi\":\"10.1137/23m1622490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1691-1728, August 2025. <br/> Abstract. In this article, we propose and study a stochastic and relaxed preconditioned Douglas–Rachford splitting method to solve saddle-point problems that have separable dual variables. We prove the almost sure convergence of the iteration sequences in Hilbert spaces for a class of convex-concave and nonsmooth saddle-point problems. We also provide the sublinear convergence rate for the ergodic sequence concerning the expectation of the restricted primal-dual gap functions. Numerical experiments show the high efficiency of the proposed stochastic and relaxed preconditioned Douglas–Rachford splitting methods.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1622490\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1622490","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第4期,1691-1728页,2025年8月。摘要。本文提出并研究了一种求解具有可分离对偶变量的鞍点问题的随机松弛预条件Douglas-Rachford分裂方法。证明了一类凹凸非光滑鞍点问题的迭代序列在Hilbert空间中的几乎肯定收敛性。我们还给出了关于受限原对偶间隙函数期望的遍历序列的次线性收敛速率。数值实验表明,本文提出的随机松弛预条件Douglas-Rachford分裂方法具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stochastic Preconditioned Douglas–Rachford Splitting Method for Saddle-Point Problems
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1691-1728, August 2025.
Abstract. In this article, we propose and study a stochastic and relaxed preconditioned Douglas–Rachford splitting method to solve saddle-point problems that have separable dual variables. We prove the almost sure convergence of the iteration sequences in Hilbert spaces for a class of convex-concave and nonsmooth saddle-point problems. We also provide the sublinear convergence rate for the ergodic sequence concerning the expectation of the restricted primal-dual gap functions. Numerical experiments show the high efficiency of the proposed stochastic and relaxed preconditioned Douglas–Rachford splitting methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信