Tarmo Puurand, Märt Möls, Lauris Kaplinski, Kadri Maal, Kaarel Krjutskov, Andres Salumets, Toomas Kivisild, Maido Remm
{"title":"Y-mer:一种基于k-mer的方法,用于从超低测序深度数据中确定人类Y染色体单倍群","authors":"Tarmo Puurand, Märt Möls, Lauris Kaplinski, Kadri Maal, Kaarel Krjutskov, Andres Salumets, Toomas Kivisild, Maido Remm","doi":"10.1186/s13059-025-03714-3","DOIUrl":null,"url":null,"abstract":"Determining genetic ancestry of an individual is challenging from poorly preserved or mixed samples that permit only ultra-low coverage sequence at depths less than 0.1 × at target loci. Leveraging recent advances in telomere-to-telomere sequencing of whole genomes with long reads, we develop a new k-mer based method, Y-mer, and show how information from hundreds of thousands of k-mers in distance-based models enables accurate inference of chrY haplogroup from whole-genome sequence at depth less than 0.01x. We test the performance of Y-mer on ancient DNA and prenatal screening data, showing its potential for genetic ancestry inference for cell-free, forensic and ancient DNA research.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"27 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Y-mer: a k-mer based method for determining human Y chromosome haplogroups from ultra-low sequencing depth data\",\"authors\":\"Tarmo Puurand, Märt Möls, Lauris Kaplinski, Kadri Maal, Kaarel Krjutskov, Andres Salumets, Toomas Kivisild, Maido Remm\",\"doi\":\"10.1186/s13059-025-03714-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining genetic ancestry of an individual is challenging from poorly preserved or mixed samples that permit only ultra-low coverage sequence at depths less than 0.1 × at target loci. Leveraging recent advances in telomere-to-telomere sequencing of whole genomes with long reads, we develop a new k-mer based method, Y-mer, and show how information from hundreds of thousands of k-mers in distance-based models enables accurate inference of chrY haplogroup from whole-genome sequence at depth less than 0.01x. We test the performance of Y-mer on ancient DNA and prenatal screening data, showing its potential for genetic ancestry inference for cell-free, forensic and ancient DNA research.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03714-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03714-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Y-mer: a k-mer based method for determining human Y chromosome haplogroups from ultra-low sequencing depth data
Determining genetic ancestry of an individual is challenging from poorly preserved or mixed samples that permit only ultra-low coverage sequence at depths less than 0.1 × at target loci. Leveraging recent advances in telomere-to-telomere sequencing of whole genomes with long reads, we develop a new k-mer based method, Y-mer, and show how information from hundreds of thousands of k-mers in distance-based models enables accurate inference of chrY haplogroup from whole-genome sequence at depth less than 0.01x. We test the performance of Y-mer on ancient DNA and prenatal screening data, showing its potential for genetic ancestry inference for cell-free, forensic and ancient DNA research.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.