广义高斯输入不确定性偏微分方程的拟蒙特卡罗算法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Philipp A. Guth, Vesa Kaarnioja
{"title":"广义高斯输入不确定性偏微分方程的拟蒙特卡罗算法","authors":"Philipp A. Guth, Vesa Kaarnioja","doi":"10.1137/24m1708164","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1666-1690, August 2025. <br/> Abstract. There has been a surge of interest in uncertainty quantification for parametric partial differential equations (PDEs) with Gevrey regular inputs. The Gevrey class contains functions that are infinitely smooth with a growth condition on the higher-order partial derivatives, but which are nonetheless not analytic in general. Recent studies by Chernov and Lê [Comput. Math. Appl., 164 (2024), pp. 116–130; SIAM J. Numer. Anal., 62 (2024), pp. 1874–1900] as well as Harbrecht, Schmidlin, and Schwab [Math. Models Methods Appl. Sci., 34 (2024), pp. 881–917] analyze the setting wherein the input random field is assumed to be uniformly bounded with respect to the uncertain parameters. In this paper, we relax this assumption and allow for parameter-dependent bounds. The parametric inputs are modeled as generalized Gaussian random variables, and we analyze the application of quasi-Monte Carlo (QMC) integration to assess the PDE response statistics using randomly shifted rank-1 lattice rules. In addition to the QMC error analysis, we also consider the dimension truncation and finite element errors in this setting.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"42 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Monte Carlo for Partial Differential Equations with Generalized Gaussian Input Uncertainty\",\"authors\":\"Philipp A. Guth, Vesa Kaarnioja\",\"doi\":\"10.1137/24m1708164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1666-1690, August 2025. <br/> Abstract. There has been a surge of interest in uncertainty quantification for parametric partial differential equations (PDEs) with Gevrey regular inputs. The Gevrey class contains functions that are infinitely smooth with a growth condition on the higher-order partial derivatives, but which are nonetheless not analytic in general. Recent studies by Chernov and Lê [Comput. Math. Appl., 164 (2024), pp. 116–130; SIAM J. Numer. Anal., 62 (2024), pp. 1874–1900] as well as Harbrecht, Schmidlin, and Schwab [Math. Models Methods Appl. Sci., 34 (2024), pp. 881–917] analyze the setting wherein the input random field is assumed to be uniformly bounded with respect to the uncertain parameters. In this paper, we relax this assumption and allow for parameter-dependent bounds. The parametric inputs are modeled as generalized Gaussian random variables, and we analyze the application of quasi-Monte Carlo (QMC) integration to assess the PDE response statistics using randomly shifted rank-1 lattice rules. In addition to the QMC error analysis, we also consider the dimension truncation and finite element errors in this setting.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1708164\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1708164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第4期,1666-1690页,2025年8月。摘要。对具有格弗雷正则输入的参数偏微分方程(PDEs)的不确定性量化的兴趣激增。Gevrey类包含具有高阶偏导数生长条件的无限光滑函数,但通常不是解析函数。Chernov和Lê最近的研究[Comput。数学。达成。, 164(2024),第116-130页;SIAM J. number。分析的。, 62 (2024), pp. 1874-1900]以及Harbrecht, Schmidlin和Schwab[数学。模型、方法、应用。科学。[j], 34 (2024), pp. 881-917]分析假设输入随机场相对于不确定参数是均匀有界的设置。在本文中,我们放宽了这个假设,并允许参数相关的边界。将参数输入建模为广义高斯随机变量,并分析了拟蒙特卡罗积分(QMC)的应用,利用随机移位秩-1格规则来评估PDE响应统计量。除了QMC误差分析外,我们还考虑了尺寸截断和有限元误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Monte Carlo for Partial Differential Equations with Generalized Gaussian Input Uncertainty
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1666-1690, August 2025.
Abstract. There has been a surge of interest in uncertainty quantification for parametric partial differential equations (PDEs) with Gevrey regular inputs. The Gevrey class contains functions that are infinitely smooth with a growth condition on the higher-order partial derivatives, but which are nonetheless not analytic in general. Recent studies by Chernov and Lê [Comput. Math. Appl., 164 (2024), pp. 116–130; SIAM J. Numer. Anal., 62 (2024), pp. 1874–1900] as well as Harbrecht, Schmidlin, and Schwab [Math. Models Methods Appl. Sci., 34 (2024), pp. 881–917] analyze the setting wherein the input random field is assumed to be uniformly bounded with respect to the uncertain parameters. In this paper, we relax this assumption and allow for parameter-dependent bounds. The parametric inputs are modeled as generalized Gaussian random variables, and we analyze the application of quasi-Monte Carlo (QMC) integration to assess the PDE response statistics using randomly shifted rank-1 lattice rules. In addition to the QMC error analysis, we also consider the dimension truncation and finite element errors in this setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信