一种基于深度学习的两步联合模型实现了浆液积液中脱落细胞的智能识别。

Yige Yin, Xiaotao Li, Dongsheng Li, Yue Hu, Qiang Wu, Jiarong Zhao, Qiuyan Sun, Hong-Qiang Wang, Wulin Yang
{"title":"一种基于深度学习的两步联合模型实现了浆液积液中脱落细胞的智能识别。","authors":"Yige Yin, Xiaotao Li, Dongsheng Li, Yue Hu, Qiang Wu, Jiarong Zhao, Qiuyan Sun, Hong-Qiang Wang, Wulin Yang","doi":"10.1016/j.compbiolchem.2025.108616","DOIUrl":null,"url":null,"abstract":"<p><p>Cytological examination of serous effusion is critical for diagnosing malignancies, yet it heavily relies on subjective interpretation by pathologists, leading to inconsistent accuracy and misdiagnosis, especially in regions with limited medical resources. To address this challenge, we propose a two-step deep learning framework to standardize and enhance the diagnostic process. First, we improved the YOLOv8 model by integrating the Online Convolutional Reparameterization (OREPA) module, achieving a 93.09 % sensitivity for detecting abnormal cells. Second, we employed the Dual Attention Vision Transformer (DaViT) to classify normal cells (lymphocytes, mesothelial cells, histiocytes, neutrophils) with 98.74 % accuracy. By jointly deploying these models, our approach reduces missed diagnoses and provides granular insights into cell composition, offering a robust tool for rapid and objective cytopathological diagnosis. This work bridges the gap between AI-driven automation and clinical needs, particularly in resource-constrained settings.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"120 Pt 1","pages":"108616"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-step joint model based on deep learning realizes intelligent recognition of exfoliated cells in serous effusion.\",\"authors\":\"Yige Yin, Xiaotao Li, Dongsheng Li, Yue Hu, Qiang Wu, Jiarong Zhao, Qiuyan Sun, Hong-Qiang Wang, Wulin Yang\",\"doi\":\"10.1016/j.compbiolchem.2025.108616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytological examination of serous effusion is critical for diagnosing malignancies, yet it heavily relies on subjective interpretation by pathologists, leading to inconsistent accuracy and misdiagnosis, especially in regions with limited medical resources. To address this challenge, we propose a two-step deep learning framework to standardize and enhance the diagnostic process. First, we improved the YOLOv8 model by integrating the Online Convolutional Reparameterization (OREPA) module, achieving a 93.09 % sensitivity for detecting abnormal cells. Second, we employed the Dual Attention Vision Transformer (DaViT) to classify normal cells (lymphocytes, mesothelial cells, histiocytes, neutrophils) with 98.74 % accuracy. By jointly deploying these models, our approach reduces missed diagnoses and provides granular insights into cell composition, offering a robust tool for rapid and objective cytopathological diagnosis. This work bridges the gap between AI-driven automation and clinical needs, particularly in resource-constrained settings.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"120 Pt 1\",\"pages\":\"108616\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2025.108616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2025.108616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

浆液积液的细胞学检查是诊断恶性肿瘤的关键,但它严重依赖于病理学家的主观解释,导致准确性不一致和误诊,特别是在医疗资源有限的地区。为了应对这一挑战,我们提出了一个两步深度学习框架,以标准化和增强诊断过程。首先,我们通过集成在线卷积重新参数化(OREPA)模块改进了YOLOv8模型,实现了检测异常细胞的93.09 %灵敏度。其次,我们使用双注意视觉转换器(DaViT)对正常细胞(淋巴细胞、间皮细胞、组织细胞、中性粒细胞)进行分类,准确率为98.74 %。通过联合部署这些模型,我们的方法减少了漏诊,并提供了对细胞组成的细粒度见解,为快速客观的细胞病理学诊断提供了一个强大的工具。这项工作弥合了人工智能驱动的自动化与临床需求之间的差距,特别是在资源有限的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-step joint model based on deep learning realizes intelligent recognition of exfoliated cells in serous effusion.

Cytological examination of serous effusion is critical for diagnosing malignancies, yet it heavily relies on subjective interpretation by pathologists, leading to inconsistent accuracy and misdiagnosis, especially in regions with limited medical resources. To address this challenge, we propose a two-step deep learning framework to standardize and enhance the diagnostic process. First, we improved the YOLOv8 model by integrating the Online Convolutional Reparameterization (OREPA) module, achieving a 93.09 % sensitivity for detecting abnormal cells. Second, we employed the Dual Attention Vision Transformer (DaViT) to classify normal cells (lymphocytes, mesothelial cells, histiocytes, neutrophils) with 98.74 % accuracy. By jointly deploying these models, our approach reduces missed diagnoses and provides granular insights into cell composition, offering a robust tool for rapid and objective cytopathological diagnosis. This work bridges the gap between AI-driven automation and clinical needs, particularly in resource-constrained settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信