一种利用柔性闪烁片测量诊断x射线曲面后向散射系数的新方法。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Kohei Nakanishi, Seiichi Yamamoto, Masato Yoshida, Kenta Miwa, Ryuichi Nishii
{"title":"一种利用柔性闪烁片测量诊断x射线曲面后向散射系数的新方法。","authors":"Kohei Nakanishi, Seiichi Yamamoto, Masato Yoshida, Kenta Miwa, Ryuichi Nishii","doi":"10.1007/s13246-025-01624-z","DOIUrl":null,"url":null,"abstract":"<p><p>The ESD is calculated using the backscatter factor (BSF). However, BSFs for flat surfaces have been used even though simulations have shown that the BSFs for curved surfaces, which represent the human body more accurately, do not match those for flat surfaces. Measuring these values in practice presents a challenge because conventional dosimeters used for BSF measurement have sensitive volumes that cannot conform to curved surfaces. In this study, we measured the BSF for a curved surface using a flexible scintillator. The scintillator, composed of Gd₃Al₂Ga₃O₁₂ (GAGG) scintillator powder mixed with a silicone adhesive, was securely attached to the curved surface of a cylindrical phantom. Diagnostic X-rays were irradiated onto the scintillator, and the BSFs were evaluated as the ratio of the light output with and without the phantom. We successfully measured BSFs on a curved surface using a flexible scintillator. The mean difference between the BSFs obtained from the experiments using the flexible scintillator and those obtained from the simulations for the cylindrical phantom was 0.43%. The maximum difference was 1.47%, which was observed at a tube voltage of 40 kV. Thus, the BSFs measured using the flexible scintillator agree well with the simulated results. Our scintillator is useful for measuring BSFs on curved surfaces and contributes to dose management.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for measuring the backscatter factor on a curved surface for diagnostic X-rays using a flexible scintillator sheet.\",\"authors\":\"Kohei Nakanishi, Seiichi Yamamoto, Masato Yoshida, Kenta Miwa, Ryuichi Nishii\",\"doi\":\"10.1007/s13246-025-01624-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ESD is calculated using the backscatter factor (BSF). However, BSFs for flat surfaces have been used even though simulations have shown that the BSFs for curved surfaces, which represent the human body more accurately, do not match those for flat surfaces. Measuring these values in practice presents a challenge because conventional dosimeters used for BSF measurement have sensitive volumes that cannot conform to curved surfaces. In this study, we measured the BSF for a curved surface using a flexible scintillator. The scintillator, composed of Gd₃Al₂Ga₃O₁₂ (GAGG) scintillator powder mixed with a silicone adhesive, was securely attached to the curved surface of a cylindrical phantom. Diagnostic X-rays were irradiated onto the scintillator, and the BSFs were evaluated as the ratio of the light output with and without the phantom. We successfully measured BSFs on a curved surface using a flexible scintillator. The mean difference between the BSFs obtained from the experiments using the flexible scintillator and those obtained from the simulations for the cylindrical phantom was 0.43%. The maximum difference was 1.47%, which was observed at a tube voltage of 40 kV. Thus, the BSFs measured using the flexible scintillator agree well with the simulated results. Our scintillator is useful for measuring BSFs on curved surfaces and contributes to dose management.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01624-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01624-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

静电放电是用后向散射系数(BSF)计算的。然而,尽管模拟表明,更准确地代表人体的曲面的bsf与平面的bsf不匹配,但仍使用了平面的bsf。在实践中测量这些值是一个挑战,因为用于BSF测量的传统剂量计具有敏感体积,不能符合曲面。在这项研究中,我们使用柔性闪烁体测量了曲面的BSF。该闪烁体由Gd₃Al₂Ga₃O₁₂(GAGG)闪烁体粉末与硅酮粘合剂混合组成,被牢固地附着在圆柱形幻影的曲面上。诊断x射线照射到闪烁体上,bsf被评估为带和不带幻体的光输出的比率。我们成功地用柔性闪烁体测量了曲面上的bsf。利用柔性闪烁体实验得到的bsf与圆柱体模拟得到的bsf的平均差值为0.43%。当管电压为40 kV时,两者的最大差异为1.47%。因此,用柔性闪烁体测量的bsf与模拟结果吻合较好。我们的闪烁体可用于测量曲面上的bsf,并有助于剂量管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for measuring the backscatter factor on a curved surface for diagnostic X-rays using a flexible scintillator sheet.

The ESD is calculated using the backscatter factor (BSF). However, BSFs for flat surfaces have been used even though simulations have shown that the BSFs for curved surfaces, which represent the human body more accurately, do not match those for flat surfaces. Measuring these values in practice presents a challenge because conventional dosimeters used for BSF measurement have sensitive volumes that cannot conform to curved surfaces. In this study, we measured the BSF for a curved surface using a flexible scintillator. The scintillator, composed of Gd₃Al₂Ga₃O₁₂ (GAGG) scintillator powder mixed with a silicone adhesive, was securely attached to the curved surface of a cylindrical phantom. Diagnostic X-rays were irradiated onto the scintillator, and the BSFs were evaluated as the ratio of the light output with and without the phantom. We successfully measured BSFs on a curved surface using a flexible scintillator. The mean difference between the BSFs obtained from the experiments using the flexible scintillator and those obtained from the simulations for the cylindrical phantom was 0.43%. The maximum difference was 1.47%, which was observed at a tube voltage of 40 kV. Thus, the BSFs measured using the flexible scintillator agree well with the simulated results. Our scintillator is useful for measuring BSFs on curved surfaces and contributes to dose management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信