{"title":"靶向巨噬细胞和小胶质细胞治疗胶质母细胞瘤的潜力。","authors":"Fei Zhou, Pritha Mukherjee, Jinming Mu, Peiwen Chen","doi":"10.1016/j.tips.2025.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is a highly aggressive and lethal form of brain tumor in human adults that resists standard of care (SOC) and immunotherapy. Tumor-associated macrophages and microglia (TAMs) represent the most abundant cell population within the GBM tumor microenvironment (TME), comprising up to 50% of the whole tumor mass. TAMs play a pivotal role in promoting tumor progression, driving immunosuppression and inducing therapy resistance. Recent advances have revealed TAM heterogeneity - including their cellular identity (e.g., bone marrow-derived macrophages versus microglia) and the presence of distinct activation/function states and subpopulations within each subtype - in GBM tumors. Targeting the context-dependent TAM infiltration, reprogramming, new subpopulations, survival, phagocytosis, and their interactions with GBM cells in the TME has emerged as a promising therapeutic strategy. Herein we review recent advances in pharmacological targeting of the TAM biology and highlight how these strategies may enhance the effectiveness of SOC and immunotherapies in GBM.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"848-862"},"PeriodicalIF":19.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Therapeutic potential of targeting macrophages and microglia in glioblastoma.\",\"authors\":\"Fei Zhou, Pritha Mukherjee, Jinming Mu, Peiwen Chen\",\"doi\":\"10.1016/j.tips.2025.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) is a highly aggressive and lethal form of brain tumor in human adults that resists standard of care (SOC) and immunotherapy. Tumor-associated macrophages and microglia (TAMs) represent the most abundant cell population within the GBM tumor microenvironment (TME), comprising up to 50% of the whole tumor mass. TAMs play a pivotal role in promoting tumor progression, driving immunosuppression and inducing therapy resistance. Recent advances have revealed TAM heterogeneity - including their cellular identity (e.g., bone marrow-derived macrophages versus microglia) and the presence of distinct activation/function states and subpopulations within each subtype - in GBM tumors. Targeting the context-dependent TAM infiltration, reprogramming, new subpopulations, survival, phagocytosis, and their interactions with GBM cells in the TME has emerged as a promising therapeutic strategy. Herein we review recent advances in pharmacological targeting of the TAM biology and highlight how these strategies may enhance the effectiveness of SOC and immunotherapies in GBM.</p>\",\"PeriodicalId\":23250,\"journal\":{\"name\":\"Trends in pharmacological sciences\",\"volume\":\" \",\"pages\":\"848-862\"},\"PeriodicalIF\":19.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tips.2025.07.006\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2025.07.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Therapeutic potential of targeting macrophages and microglia in glioblastoma.
Glioblastoma (GBM) is a highly aggressive and lethal form of brain tumor in human adults that resists standard of care (SOC) and immunotherapy. Tumor-associated macrophages and microglia (TAMs) represent the most abundant cell population within the GBM tumor microenvironment (TME), comprising up to 50% of the whole tumor mass. TAMs play a pivotal role in promoting tumor progression, driving immunosuppression and inducing therapy resistance. Recent advances have revealed TAM heterogeneity - including their cellular identity (e.g., bone marrow-derived macrophages versus microglia) and the presence of distinct activation/function states and subpopulations within each subtype - in GBM tumors. Targeting the context-dependent TAM infiltration, reprogramming, new subpopulations, survival, phagocytosis, and their interactions with GBM cells in the TME has emerged as a promising therapeutic strategy. Herein we review recent advances in pharmacological targeting of the TAM biology and highlight how these strategies may enhance the effectiveness of SOC and immunotherapies in GBM.
期刊介绍:
Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research.
The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics.
Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles.
Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.