{"title":"表征皮纳图博火山喷发后大气影响的多元时空动态模型","authors":"Robert C. Garrett, Lyndsay Shand, Gabriel Huerta","doi":"10.1002/env.70030","DOIUrl":null,"url":null,"abstract":"<p>The June 1991 Mt. Pinatubo eruption resulted in a massive increase of sulfate aerosols in the atmosphere, absorbing radiation and leading to global changes in surface and stratospheric temperatures. A volcanic eruption of this magnitude serves as a natural analog for stratospheric aerosol injection, a proposed solar radiation modification method to combat a warming climate. The impacts of such an event are multifaceted and region-specific. Our goal is to characterize the multivariate and dynamic nature of the atmospheric impacts following the Mt. Pinatubo eruption. We developed a multivariate space-time dynamic linear model to understand the full extent of the spatially- and temporally-varying impacts. Specifically, spatial variation is modeled using a flexible set of basis functions for which the basis coefficients are allowed to vary in time through a vector autoregressive (VAR) structure. This novel model is cast in a Dynamic Linear Model (DLM) framework and estimated via a customized MCMC approach. We demonstrate how the model quantifies the relationships between key atmospheric parameters prior to and following the Mt. Pinatubo eruption with reanalysis data from MERRA-2 and highlight when such a model is advantageous over univariate models.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70030","citationCount":"0","resultStr":"{\"title\":\"A Multivariate Space-Time Dynamic Model for Characterizing the Atmospheric Impacts Following the Mt. Pinatubo Eruption\",\"authors\":\"Robert C. Garrett, Lyndsay Shand, Gabriel Huerta\",\"doi\":\"10.1002/env.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The June 1991 Mt. Pinatubo eruption resulted in a massive increase of sulfate aerosols in the atmosphere, absorbing radiation and leading to global changes in surface and stratospheric temperatures. A volcanic eruption of this magnitude serves as a natural analog for stratospheric aerosol injection, a proposed solar radiation modification method to combat a warming climate. The impacts of such an event are multifaceted and region-specific. Our goal is to characterize the multivariate and dynamic nature of the atmospheric impacts following the Mt. Pinatubo eruption. We developed a multivariate space-time dynamic linear model to understand the full extent of the spatially- and temporally-varying impacts. Specifically, spatial variation is modeled using a flexible set of basis functions for which the basis coefficients are allowed to vary in time through a vector autoregressive (VAR) structure. This novel model is cast in a Dynamic Linear Model (DLM) framework and estimated via a customized MCMC approach. We demonstrate how the model quantifies the relationships between key atmospheric parameters prior to and following the Mt. Pinatubo eruption with reanalysis data from MERRA-2 and highlight when such a model is advantageous over univariate models.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.70030\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70030","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Multivariate Space-Time Dynamic Model for Characterizing the Atmospheric Impacts Following the Mt. Pinatubo Eruption
The June 1991 Mt. Pinatubo eruption resulted in a massive increase of sulfate aerosols in the atmosphere, absorbing radiation and leading to global changes in surface and stratospheric temperatures. A volcanic eruption of this magnitude serves as a natural analog for stratospheric aerosol injection, a proposed solar radiation modification method to combat a warming climate. The impacts of such an event are multifaceted and region-specific. Our goal is to characterize the multivariate and dynamic nature of the atmospheric impacts following the Mt. Pinatubo eruption. We developed a multivariate space-time dynamic linear model to understand the full extent of the spatially- and temporally-varying impacts. Specifically, spatial variation is modeled using a flexible set of basis functions for which the basis coefficients are allowed to vary in time through a vector autoregressive (VAR) structure. This novel model is cast in a Dynamic Linear Model (DLM) framework and estimated via a customized MCMC approach. We demonstrate how the model quantifies the relationships between key atmospheric parameters prior to and following the Mt. Pinatubo eruption with reanalysis data from MERRA-2 and highlight when such a model is advantageous over univariate models.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.