{"title":"用固有信号特性估计引力波距离:暗警报器作为距离指示器","authors":"Trisha V, Rakesh V, Arun Kenath","doi":"10.1007/s10509-025-04466-z","DOIUrl":null,"url":null,"abstract":"<div><p>Gravitational Waves (GWs) provide a powerful means for cosmological distance estimation, circumventing the systematic uncertainties associated with traditional electromagnetic (EM) indicators. This work presents a model for estimating distances to binary black hole (BBH) mergers using only GW data, independent of EM counterparts or galaxy catalogs. By utilizing the intrinsic properties of the GW signal, specifically the strain amplitude and merger frequency, our model offers a computationally efficient preliminary distance estimation approach that could complements existing Bayesian parameter estimation pipelines. In this work, we examine a simplified analytical expression for the GW luminosity distance derived from General Relativity (GR), based on the leading-order quadrupole approximation. Without incorporating post-Newtonian (PN) or numerical relativity (NR) corrections, or modeling spin, eccentricity, or inclination, we test how closely this expression can reproduce distances reported by full Bayesian inference pipelines. We apply our model to 87 events from the LIGO-Virgo-Kagra (LVK) Gravitational Wave Transient Catalogues (GWTC), computing distances for these sources. Our results demonstrate consistent agreement with GWTC-reported distances, further supported by graphical comparisons that highlight the model’s performance across multiple events.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational wave distance estimation using intrinsic signal properties: dark sirens as distance indicators\",\"authors\":\"Trisha V, Rakesh V, Arun Kenath\",\"doi\":\"10.1007/s10509-025-04466-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gravitational Waves (GWs) provide a powerful means for cosmological distance estimation, circumventing the systematic uncertainties associated with traditional electromagnetic (EM) indicators. This work presents a model for estimating distances to binary black hole (BBH) mergers using only GW data, independent of EM counterparts or galaxy catalogs. By utilizing the intrinsic properties of the GW signal, specifically the strain amplitude and merger frequency, our model offers a computationally efficient preliminary distance estimation approach that could complements existing Bayesian parameter estimation pipelines. In this work, we examine a simplified analytical expression for the GW luminosity distance derived from General Relativity (GR), based on the leading-order quadrupole approximation. Without incorporating post-Newtonian (PN) or numerical relativity (NR) corrections, or modeling spin, eccentricity, or inclination, we test how closely this expression can reproduce distances reported by full Bayesian inference pipelines. We apply our model to 87 events from the LIGO-Virgo-Kagra (LVK) Gravitational Wave Transient Catalogues (GWTC), computing distances for these sources. Our results demonstrate consistent agreement with GWTC-reported distances, further supported by graphical comparisons that highlight the model’s performance across multiple events.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04466-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04466-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Gravitational wave distance estimation using intrinsic signal properties: dark sirens as distance indicators
Gravitational Waves (GWs) provide a powerful means for cosmological distance estimation, circumventing the systematic uncertainties associated with traditional electromagnetic (EM) indicators. This work presents a model for estimating distances to binary black hole (BBH) mergers using only GW data, independent of EM counterparts or galaxy catalogs. By utilizing the intrinsic properties of the GW signal, specifically the strain amplitude and merger frequency, our model offers a computationally efficient preliminary distance estimation approach that could complements existing Bayesian parameter estimation pipelines. In this work, we examine a simplified analytical expression for the GW luminosity distance derived from General Relativity (GR), based on the leading-order quadrupole approximation. Without incorporating post-Newtonian (PN) or numerical relativity (NR) corrections, or modeling spin, eccentricity, or inclination, we test how closely this expression can reproduce distances reported by full Bayesian inference pipelines. We apply our model to 87 events from the LIGO-Virgo-Kagra (LVK) Gravitational Wave Transient Catalogues (GWTC), computing distances for these sources. Our results demonstrate consistent agreement with GWTC-reported distances, further supported by graphical comparisons that highlight the model’s performance across multiple events.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.