用固有信号特性估计引力波距离:暗警报器作为距离指示器

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Trisha V, Rakesh V, Arun Kenath
{"title":"用固有信号特性估计引力波距离:暗警报器作为距离指示器","authors":"Trisha V,&nbsp;Rakesh V,&nbsp;Arun Kenath","doi":"10.1007/s10509-025-04466-z","DOIUrl":null,"url":null,"abstract":"<div><p>Gravitational Waves (GWs) provide a powerful means for cosmological distance estimation, circumventing the systematic uncertainties associated with traditional electromagnetic (EM) indicators. This work presents a model for estimating distances to binary black hole (BBH) mergers using only GW data, independent of EM counterparts or galaxy catalogs. By utilizing the intrinsic properties of the GW signal, specifically the strain amplitude and merger frequency, our model offers a computationally efficient preliminary distance estimation approach that could complements existing Bayesian parameter estimation pipelines. In this work, we examine a simplified analytical expression for the GW luminosity distance derived from General Relativity (GR), based on the leading-order quadrupole approximation. Without incorporating post-Newtonian (PN) or numerical relativity (NR) corrections, or modeling spin, eccentricity, or inclination, we test how closely this expression can reproduce distances reported by full Bayesian inference pipelines. We apply our model to 87 events from the LIGO-Virgo-Kagra (LVK) Gravitational Wave Transient Catalogues (GWTC), computing distances for these sources. Our results demonstrate consistent agreement with GWTC-reported distances, further supported by graphical comparisons that highlight the model’s performance across multiple events.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational wave distance estimation using intrinsic signal properties: dark sirens as distance indicators\",\"authors\":\"Trisha V,&nbsp;Rakesh V,&nbsp;Arun Kenath\",\"doi\":\"10.1007/s10509-025-04466-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gravitational Waves (GWs) provide a powerful means for cosmological distance estimation, circumventing the systematic uncertainties associated with traditional electromagnetic (EM) indicators. This work presents a model for estimating distances to binary black hole (BBH) mergers using only GW data, independent of EM counterparts or galaxy catalogs. By utilizing the intrinsic properties of the GW signal, specifically the strain amplitude and merger frequency, our model offers a computationally efficient preliminary distance estimation approach that could complements existing Bayesian parameter estimation pipelines. In this work, we examine a simplified analytical expression for the GW luminosity distance derived from General Relativity (GR), based on the leading-order quadrupole approximation. Without incorporating post-Newtonian (PN) or numerical relativity (NR) corrections, or modeling spin, eccentricity, or inclination, we test how closely this expression can reproduce distances reported by full Bayesian inference pipelines. We apply our model to 87 events from the LIGO-Virgo-Kagra (LVK) Gravitational Wave Transient Catalogues (GWTC), computing distances for these sources. Our results demonstrate consistent agreement with GWTC-reported distances, further supported by graphical comparisons that highlight the model’s performance across multiple events.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04466-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04466-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

引力波(GWs)为宇宙距离估计提供了一种强大的手段,避免了与传统电磁(EM)指标相关的系统不确定性。这项工作提出了一个模型来估计距离双黑洞(BBH)合并仅使用GW数据,独立于EM对应或星系目录。通过利用GW信号的固有特性,特别是应变幅度和合并频率,我们的模型提供了一种计算效率高的初步距离估计方法,可以补充现有的贝叶斯参数估计管道。在这项工作中,我们研究了广义相对论(GR)中基于首阶四极近似的GW光度距离的简化解析表达式。在不考虑后牛顿(PN)或数值相对论(NR)修正,或建模自旋、偏心或倾角的情况下,我们测试了该表达式能多接近地再现由完整贝叶斯推理管道报告的距离。我们将我们的模型应用于LIGO-Virgo-Kagra (LVK)引力波瞬变目录(GWTC)中的87个事件,计算了这些源的距离。我们的结果与gwtc报告的距离一致,并得到了图形比较的进一步支持,图形比较突出了模型在多个事件中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gravitational wave distance estimation using intrinsic signal properties: dark sirens as distance indicators

Gravitational Waves (GWs) provide a powerful means for cosmological distance estimation, circumventing the systematic uncertainties associated with traditional electromagnetic (EM) indicators. This work presents a model for estimating distances to binary black hole (BBH) mergers using only GW data, independent of EM counterparts or galaxy catalogs. By utilizing the intrinsic properties of the GW signal, specifically the strain amplitude and merger frequency, our model offers a computationally efficient preliminary distance estimation approach that could complements existing Bayesian parameter estimation pipelines. In this work, we examine a simplified analytical expression for the GW luminosity distance derived from General Relativity (GR), based on the leading-order quadrupole approximation. Without incorporating post-Newtonian (PN) or numerical relativity (NR) corrections, or modeling spin, eccentricity, or inclination, we test how closely this expression can reproduce distances reported by full Bayesian inference pipelines. We apply our model to 87 events from the LIGO-Virgo-Kagra (LVK) Gravitational Wave Transient Catalogues (GWTC), computing distances for these sources. Our results demonstrate consistent agreement with GWTC-reported distances, further supported by graphical comparisons that highlight the model’s performance across multiple events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信