{"title":"边有缺陷的超立方体的边-双环性","authors":"Qianhong Liu, Fan Wang","doi":"10.1016/j.tcs.2025.115503","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the edge-bipancyclicity property of hypercubes with faulty edges. For <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, let <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be an <em>n</em>-dimensional hypercube, and let <em>F</em> be a set of faulty edges in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≤</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>11</mn></math></span>. If every vertex in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> has a degree of at least 2 and no 4-cycle in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> has a pair of non-adjacent vertices both of degree 2, then every edge <em>e</em> in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> lies on a fault-free cycle of every even length from 8 to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, with two exceptions: (1) there exists a 4-cycle in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> containing the edge <em>e</em> such that the vertices on the 4-cycle which are not incident with <em>e</em> both have a degree of 2; (2) there exist two vertices of degree 2 which are not endpoints of edge <em>e</em> but are adjacent to the same endpoint of <em>e</em> in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span>. This result improves upon some known results on edge-bipancyclicity of hypercubes with faulty edges.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1056 ","pages":"Article 115503"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-bipancyclicity of hypercubes with faulty edges\",\"authors\":\"Qianhong Liu, Fan Wang\",\"doi\":\"10.1016/j.tcs.2025.115503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the edge-bipancyclicity property of hypercubes with faulty edges. For <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, let <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be an <em>n</em>-dimensional hypercube, and let <em>F</em> be a set of faulty edges in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≤</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>11</mn></math></span>. If every vertex in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> has a degree of at least 2 and no 4-cycle in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> has a pair of non-adjacent vertices both of degree 2, then every edge <em>e</em> in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> lies on a fault-free cycle of every even length from 8 to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, with two exceptions: (1) there exists a 4-cycle in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span> containing the edge <em>e</em> such that the vertices on the 4-cycle which are not incident with <em>e</em> both have a degree of 2; (2) there exist two vertices of degree 2 which are not endpoints of edge <em>e</em> but are adjacent to the same endpoint of <em>e</em> in <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>F</mi></math></span>. This result improves upon some known results on edge-bipancyclicity of hypercubes with faulty edges.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1056 \",\"pages\":\"Article 115503\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525004414\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525004414","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Edge-bipancyclicity of hypercubes with faulty edges
In this paper, we consider the edge-bipancyclicity property of hypercubes with faulty edges. For , let be an n-dimensional hypercube, and let F be a set of faulty edges in such that . If every vertex in has a degree of at least 2 and no 4-cycle in has a pair of non-adjacent vertices both of degree 2, then every edge e in lies on a fault-free cycle of every even length from 8 to , with two exceptions: (1) there exists a 4-cycle in containing the edge e such that the vertices on the 4-cycle which are not incident with e both have a degree of 2; (2) there exist two vertices of degree 2 which are not endpoints of edge e but are adjacent to the same endpoint of e in . This result improves upon some known results on edge-bipancyclicity of hypercubes with faulty edges.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.