用于硬、软执行器的相变有机硅弹性体

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Yoo Jin Lee, Asaf Dana, Sasha M. George, Manivannan Sivaperuman Kalairaj, Yeh-Chia Tseng, Brandon M. Nitschke, Jared A. Gibson, Melissa A. Grunlan and Taylor H. Ware*, 
{"title":"用于硬、软执行器的相变有机硅弹性体","authors":"Yoo Jin Lee,&nbsp;Asaf Dana,&nbsp;Sasha M. George,&nbsp;Manivannan Sivaperuman Kalairaj,&nbsp;Yeh-Chia Tseng,&nbsp;Brandon M. Nitschke,&nbsp;Jared A. Gibson,&nbsp;Melissa A. Grunlan and Taylor H. Ware*,&nbsp;","doi":"10.1021/acs.macromol.5c01221","DOIUrl":null,"url":null,"abstract":"<p >Soft materials capable of controlled shape changes near ambient temperature are of interest for active devices that interact with living organisms. In this study, we achieve such functionalities by synthesizing responsive elastomers based on polydiethylsiloxane (PDES). Unlike conventional silicones, PDES elastomers are mesomorphic. Without any reinforcing additives, the mesophase improves the toughness of PDES to 8 times that of neat polydimethylsiloxane (PDMS) elastomers and 4 times that of Sylgard 184. Uniaxially stretched mesomorphic PDES elastomers undergo reversible shape changes under a bias load in response to temperature, generating 14% contractile strain on heating from 0 to 40 °C. The utility of PDES elastomers as actuators is enhanced by fabricating them into twisting actuators and describing strategies to minimize hysteresis during shape change cycles. The combination of toughness, actuation near ambient temperature, and environmental stability suggests that PDES could be attractive for biomedical devices where soft actuators interface with living organisms.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 15","pages":"8067–8078"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c01221","citationCount":"0","resultStr":"{\"title\":\"Phase-Change Silicone Elastomers for Tough, Soft Actuators\",\"authors\":\"Yoo Jin Lee,&nbsp;Asaf Dana,&nbsp;Sasha M. George,&nbsp;Manivannan Sivaperuman Kalairaj,&nbsp;Yeh-Chia Tseng,&nbsp;Brandon M. Nitschke,&nbsp;Jared A. Gibson,&nbsp;Melissa A. Grunlan and Taylor H. Ware*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c01221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Soft materials capable of controlled shape changes near ambient temperature are of interest for active devices that interact with living organisms. In this study, we achieve such functionalities by synthesizing responsive elastomers based on polydiethylsiloxane (PDES). Unlike conventional silicones, PDES elastomers are mesomorphic. Without any reinforcing additives, the mesophase improves the toughness of PDES to 8 times that of neat polydimethylsiloxane (PDMS) elastomers and 4 times that of Sylgard 184. Uniaxially stretched mesomorphic PDES elastomers undergo reversible shape changes under a bias load in response to temperature, generating 14% contractile strain on heating from 0 to 40 °C. The utility of PDES elastomers as actuators is enhanced by fabricating them into twisting actuators and describing strategies to minimize hysteresis during shape change cycles. The combination of toughness, actuation near ambient temperature, and environmental stability suggests that PDES could be attractive for biomedical devices where soft actuators interface with living organisms.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 15\",\"pages\":\"8067–8078\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c01221\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01221\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01221","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

能够在环境温度附近控制形状变化的软材料是与生物体相互作用的有源设备的兴趣。在这项研究中,我们通过合成基于聚二乙基硅氧烷(PDES)的响应弹性体来实现这些功能。与传统的有机硅不同,PDES弹性体是中晶的。在不添加任何增强剂的情况下,中间相将PDES的韧性提高到纯聚二甲基硅氧烷(PDMS)弹性体的8倍,Sylgard 184的4倍。单轴拉伸的中晶PDES弹性体在偏置载荷下随温度发生可逆的形状变化,在0 ~ 40℃加热时产生14%的收缩应变。通过将PDES弹性体制作成扭转致动器并描述在形状变化周期中最小化迟滞的策略,可以增强PDES弹性体作为致动器的效用。韧性、接近环境温度的致动性和环境稳定性的结合表明,PDES对于软致动器与生物体接口的生物医学设备具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase-Change Silicone Elastomers for Tough, Soft Actuators

Soft materials capable of controlled shape changes near ambient temperature are of interest for active devices that interact with living organisms. In this study, we achieve such functionalities by synthesizing responsive elastomers based on polydiethylsiloxane (PDES). Unlike conventional silicones, PDES elastomers are mesomorphic. Without any reinforcing additives, the mesophase improves the toughness of PDES to 8 times that of neat polydimethylsiloxane (PDMS) elastomers and 4 times that of Sylgard 184. Uniaxially stretched mesomorphic PDES elastomers undergo reversible shape changes under a bias load in response to temperature, generating 14% contractile strain on heating from 0 to 40 °C. The utility of PDES elastomers as actuators is enhanced by fabricating them into twisting actuators and describing strategies to minimize hysteresis during shape change cycles. The combination of toughness, actuation near ambient temperature, and environmental stability suggests that PDES could be attractive for biomedical devices where soft actuators interface with living organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信