微观视角下可生物降解聚乳酸纳米复合材料的微观结构、聚合物动力学、聚合物-纳米粒子相互作用和流变性

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Hyojin Jung, Alice Klapproth, Nicolas R. de Souza* and So Youn Kim*, 
{"title":"微观视角下可生物降解聚乳酸纳米复合材料的微观结构、聚合物动力学、聚合物-纳米粒子相互作用和流变性","authors":"Hyojin Jung,&nbsp;Alice Klapproth,&nbsp;Nicolas R. de Souza* and So Youn Kim*,&nbsp;","doi":"10.1021/acs.macromol.5c00564","DOIUrl":null,"url":null,"abstract":"<p >The increasing demand for sustainable materials has accelerated research into biodegradable polymers as alternatives to conventional plastics. Polylactic acid (PLA), a leading biopolymer, offers promising biodegradability but often suffers from low mechanical strength. To enhance its properties, bioderived nanoparticles (NPs) can be incorporated to form biodegradable polymer nanocomposites (PNCs). However, a microscopic understanding of PLA-NP interactions remains limited, and interfacial incompatibility presents challenges for effective property optimization and warrants further investigation. In this study, we conduct a comprehensive analysis of PLA-based PNCs reinforced with cellulose nanocrystals (CNCs). Using small-angle scattering and quasi-elastic neutron scattering, we examine the effects of CNC incorporation on PLA’s microstructure, dynamics, and macroscopic properties. Additionally, rheological measurements provide insights into how nanoscale interactions influence bulk mechanical behavior. Our findings contribute to a fundamental understanding of PLA/CNC nanocomposites, offering guidance for the rational design of high-performance, biodegradable polymer materials.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 15","pages":"7935–7947"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c00564","citationCount":"0","resultStr":"{\"title\":\"Microstructure, Polymer Dynamics, Polymer–Nanoparticle Interactions, and Rheology of Biodegradable Polylactic Acid Nanocomposites with Cellulose Nanocrystals: A Microscopic Perspective\",\"authors\":\"Hyojin Jung,&nbsp;Alice Klapproth,&nbsp;Nicolas R. de Souza* and So Youn Kim*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c00564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing demand for sustainable materials has accelerated research into biodegradable polymers as alternatives to conventional plastics. Polylactic acid (PLA), a leading biopolymer, offers promising biodegradability but often suffers from low mechanical strength. To enhance its properties, bioderived nanoparticles (NPs) can be incorporated to form biodegradable polymer nanocomposites (PNCs). However, a microscopic understanding of PLA-NP interactions remains limited, and interfacial incompatibility presents challenges for effective property optimization and warrants further investigation. In this study, we conduct a comprehensive analysis of PLA-based PNCs reinforced with cellulose nanocrystals (CNCs). Using small-angle scattering and quasi-elastic neutron scattering, we examine the effects of CNC incorporation on PLA’s microstructure, dynamics, and macroscopic properties. Additionally, rheological measurements provide insights into how nanoscale interactions influence bulk mechanical behavior. Our findings contribute to a fundamental understanding of PLA/CNC nanocomposites, offering guidance for the rational design of high-performance, biodegradable polymer materials.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 15\",\"pages\":\"7935–7947\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c00564\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c00564\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c00564","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

对可持续材料日益增长的需求加速了对生物可降解聚合物作为传统塑料替代品的研究。聚乳酸(PLA)是一种领先的生物聚合物,具有良好的生物降解性,但通常存在机械强度低的问题。为了提高其性能,生物衍生纳米颗粒(NPs)可以被掺入形成可生物降解的聚合物纳米复合材料(pnc)。然而,对PLA-NP相互作用的微观理解仍然有限,界面不相容为有效的性能优化提出了挑战,需要进一步研究。在这项研究中,我们对纤维素纳米晶体(CNCs)增强pla基pnc进行了全面的分析。利用小角散射和准弹性中子散射,研究了CNC掺入对PLA微观结构、动力学和宏观性能的影响。此外,流变测量提供了纳米级相互作用如何影响整体力学行为的见解。我们的发现有助于对PLA/CNC纳米复合材料的基本理解,为高性能、可生物降解高分子材料的合理设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure, Polymer Dynamics, Polymer–Nanoparticle Interactions, and Rheology of Biodegradable Polylactic Acid Nanocomposites with Cellulose Nanocrystals: A Microscopic Perspective

The increasing demand for sustainable materials has accelerated research into biodegradable polymers as alternatives to conventional plastics. Polylactic acid (PLA), a leading biopolymer, offers promising biodegradability but often suffers from low mechanical strength. To enhance its properties, bioderived nanoparticles (NPs) can be incorporated to form biodegradable polymer nanocomposites (PNCs). However, a microscopic understanding of PLA-NP interactions remains limited, and interfacial incompatibility presents challenges for effective property optimization and warrants further investigation. In this study, we conduct a comprehensive analysis of PLA-based PNCs reinforced with cellulose nanocrystals (CNCs). Using small-angle scattering and quasi-elastic neutron scattering, we examine the effects of CNC incorporation on PLA’s microstructure, dynamics, and macroscopic properties. Additionally, rheological measurements provide insights into how nanoscale interactions influence bulk mechanical behavior. Our findings contribute to a fundamental understanding of PLA/CNC nanocomposites, offering guidance for the rational design of high-performance, biodegradable polymer materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信