靶向DNA回转酶B的新型耐药细菌先导抑制剂biselyngbyaside B的发现。

Kiran Mahapatra, Swagat Ranjan Maharana, Showkat Ahmad Mir, Munmun Bordhan, Binata Nayak
{"title":"靶向DNA回转酶B的新型耐药细菌先导抑制剂biselyngbyaside B的发现。","authors":"Kiran Mahapatra, Swagat Ranjan Maharana, Showkat Ahmad Mir, Munmun Bordhan, Binata Nayak","doi":"10.1016/j.compbiolchem.2025.108628","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) poses a growing global threat, with antibiotic-resistant infections becoming a leading cause of death worldwide. The present study explores natural cyanobacterial compounds as possible inhibitors of Escherichia coli DNA gyrase B (GyrB) which is a verified antibacterial target that is not present in higher eukaryotes. Because of the urgent need for novel antibacterial drugs, we identified nine drug-like candidates using lipinski's rule of five and ADMET profiling. Molecular docking revealed that Biselyngbyaside B and Smenamide A exhibited greater binding affinities in comparison to the co-crystallized inhibitor EOF, with a binding energy of -9.03 kcal/mol. Further molecular dynamics simulations revealed that the Biselyngbyaside B-DNA gyrase B complex surpassed both EOF and Smenamide A in terms of structural stability, compactness, and strong hydrogen bonding. Umbrella sampling was employed to estimate the binding free energy from thirty sampling simulations, and Biselyngbyaside B exhibited a significantly favourable ΔG bind of -91.66 kJ/mol, outperforming EOF (-68.93 kJ/mol) and Smenamide A (-36.4 kJ/mol). These findings clearly indicate a stronger and more stable interaction between Biselyngbyaside B and GyrB. Biselyngbyaside B continuously showed better pharmacokinetic characteristics, non-hepatotoxicity, and a greater binding affinity than previously documented DNA gyrase B inhibitors. This study emphasizes the integration of molecular dockings, molecular dynamics simulation, umbrella sampling, and ADMET analysis provided crucial quantitative insights into the identification of potent drug-like candidates for further validation. Overall, the Biselyngbyaside B was found to be the most promising lead compound for novel antibacterial drug development targeting DNA gyrase B.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"120 Pt 1","pages":"108628"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of biselyngbyaside B a novel lead inhibitor of drug-resistant bacteria targeting DNA gyrase B.\",\"authors\":\"Kiran Mahapatra, Swagat Ranjan Maharana, Showkat Ahmad Mir, Munmun Bordhan, Binata Nayak\",\"doi\":\"10.1016/j.compbiolchem.2025.108628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) poses a growing global threat, with antibiotic-resistant infections becoming a leading cause of death worldwide. The present study explores natural cyanobacterial compounds as possible inhibitors of Escherichia coli DNA gyrase B (GyrB) which is a verified antibacterial target that is not present in higher eukaryotes. Because of the urgent need for novel antibacterial drugs, we identified nine drug-like candidates using lipinski's rule of five and ADMET profiling. Molecular docking revealed that Biselyngbyaside B and Smenamide A exhibited greater binding affinities in comparison to the co-crystallized inhibitor EOF, with a binding energy of -9.03 kcal/mol. Further molecular dynamics simulations revealed that the Biselyngbyaside B-DNA gyrase B complex surpassed both EOF and Smenamide A in terms of structural stability, compactness, and strong hydrogen bonding. Umbrella sampling was employed to estimate the binding free energy from thirty sampling simulations, and Biselyngbyaside B exhibited a significantly favourable ΔG bind of -91.66 kJ/mol, outperforming EOF (-68.93 kJ/mol) and Smenamide A (-36.4 kJ/mol). These findings clearly indicate a stronger and more stable interaction between Biselyngbyaside B and GyrB. Biselyngbyaside B continuously showed better pharmacokinetic characteristics, non-hepatotoxicity, and a greater binding affinity than previously documented DNA gyrase B inhibitors. This study emphasizes the integration of molecular dockings, molecular dynamics simulation, umbrella sampling, and ADMET analysis provided crucial quantitative insights into the identification of potent drug-like candidates for further validation. Overall, the Biselyngbyaside B was found to be the most promising lead compound for novel antibacterial drug development targeting DNA gyrase B.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"120 Pt 1\",\"pages\":\"108628\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2025.108628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2025.108628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性(AMR)构成了日益严重的全球威胁,抗生素耐药性感染已成为全球死亡的主要原因。本研究探索天然蓝藻化合物作为大肠杆菌DNA回转酶B (GyrB)的可能抑制剂,这是一种经过验证的抗菌靶点,不存在于高等真核生物中。由于对新型抗菌药物的迫切需求,我们使用lipinski的五法则和ADMET分析确定了9个类似药物的候选药物。分子对接发现,与共晶抑制剂EOF相比,Biselyngbyaside B和Smenamide A具有更强的结合亲和力,结合能为-9.03 kcal/mol。进一步的分子动力学模拟表明,Biselyngbyaside B- dna gyrase B复合物在结构稳定性、致密性和强氢键性方面优于EOF和Smenamide A。采用伞式采样法对30个采样模拟进行了结合自由能估算,结果表明Biselyngbyaside B的结合自由能为-91.66 kJ/mol,明显优于EOF(-68.93 kJ/mol)和Smenamide a(-36.4 kJ/mol)。这些发现清楚地表明Biselyngbyaside B和GyrB之间的相互作用更强、更稳定。Biselyngbyaside B持续表现出更好的药代动力学特征、无肝毒性和比先前文献记载的DNA gyrase B抑制剂更大的结合亲和力。本研究强调了分子对接、分子动力学模拟、保护伞取样和ADMET分析的整合,为进一步验证有效的候选药物的鉴定提供了重要的定量见解。综上所述,Biselyngbyaside B被认为是最有希望开发针对DNA旋切酶B的新型抗菌药物的先导化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of biselyngbyaside B a novel lead inhibitor of drug-resistant bacteria targeting DNA gyrase B.

Antimicrobial resistance (AMR) poses a growing global threat, with antibiotic-resistant infections becoming a leading cause of death worldwide. The present study explores natural cyanobacterial compounds as possible inhibitors of Escherichia coli DNA gyrase B (GyrB) which is a verified antibacterial target that is not present in higher eukaryotes. Because of the urgent need for novel antibacterial drugs, we identified nine drug-like candidates using lipinski's rule of five and ADMET profiling. Molecular docking revealed that Biselyngbyaside B and Smenamide A exhibited greater binding affinities in comparison to the co-crystallized inhibitor EOF, with a binding energy of -9.03 kcal/mol. Further molecular dynamics simulations revealed that the Biselyngbyaside B-DNA gyrase B complex surpassed both EOF and Smenamide A in terms of structural stability, compactness, and strong hydrogen bonding. Umbrella sampling was employed to estimate the binding free energy from thirty sampling simulations, and Biselyngbyaside B exhibited a significantly favourable ΔG bind of -91.66 kJ/mol, outperforming EOF (-68.93 kJ/mol) and Smenamide A (-36.4 kJ/mol). These findings clearly indicate a stronger and more stable interaction between Biselyngbyaside B and GyrB. Biselyngbyaside B continuously showed better pharmacokinetic characteristics, non-hepatotoxicity, and a greater binding affinity than previously documented DNA gyrase B inhibitors. This study emphasizes the integration of molecular dockings, molecular dynamics simulation, umbrella sampling, and ADMET analysis provided crucial quantitative insights into the identification of potent drug-like candidates for further validation. Overall, the Biselyngbyaside B was found to be the most promising lead compound for novel antibacterial drug development targeting DNA gyrase B.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信