{"title":"靶向DNA回转酶B的新型耐药细菌先导抑制剂biselyngbyaside B的发现。","authors":"Kiran Mahapatra, Swagat Ranjan Maharana, Showkat Ahmad Mir, Munmun Bordhan, Binata Nayak","doi":"10.1016/j.compbiolchem.2025.108628","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) poses a growing global threat, with antibiotic-resistant infections becoming a leading cause of death worldwide. The present study explores natural cyanobacterial compounds as possible inhibitors of Escherichia coli DNA gyrase B (GyrB) which is a verified antibacterial target that is not present in higher eukaryotes. Because of the urgent need for novel antibacterial drugs, we identified nine drug-like candidates using lipinski's rule of five and ADMET profiling. Molecular docking revealed that Biselyngbyaside B and Smenamide A exhibited greater binding affinities in comparison to the co-crystallized inhibitor EOF, with a binding energy of -9.03 kcal/mol. Further molecular dynamics simulations revealed that the Biselyngbyaside B-DNA gyrase B complex surpassed both EOF and Smenamide A in terms of structural stability, compactness, and strong hydrogen bonding. Umbrella sampling was employed to estimate the binding free energy from thirty sampling simulations, and Biselyngbyaside B exhibited a significantly favourable ΔG bind of -91.66 kJ/mol, outperforming EOF (-68.93 kJ/mol) and Smenamide A (-36.4 kJ/mol). These findings clearly indicate a stronger and more stable interaction between Biselyngbyaside B and GyrB. Biselyngbyaside B continuously showed better pharmacokinetic characteristics, non-hepatotoxicity, and a greater binding affinity than previously documented DNA gyrase B inhibitors. This study emphasizes the integration of molecular dockings, molecular dynamics simulation, umbrella sampling, and ADMET analysis provided crucial quantitative insights into the identification of potent drug-like candidates for further validation. Overall, the Biselyngbyaside B was found to be the most promising lead compound for novel antibacterial drug development targeting DNA gyrase B.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"120 Pt 1","pages":"108628"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of biselyngbyaside B a novel lead inhibitor of drug-resistant bacteria targeting DNA gyrase B.\",\"authors\":\"Kiran Mahapatra, Swagat Ranjan Maharana, Showkat Ahmad Mir, Munmun Bordhan, Binata Nayak\",\"doi\":\"10.1016/j.compbiolchem.2025.108628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) poses a growing global threat, with antibiotic-resistant infections becoming a leading cause of death worldwide. The present study explores natural cyanobacterial compounds as possible inhibitors of Escherichia coli DNA gyrase B (GyrB) which is a verified antibacterial target that is not present in higher eukaryotes. Because of the urgent need for novel antibacterial drugs, we identified nine drug-like candidates using lipinski's rule of five and ADMET profiling. Molecular docking revealed that Biselyngbyaside B and Smenamide A exhibited greater binding affinities in comparison to the co-crystallized inhibitor EOF, with a binding energy of -9.03 kcal/mol. Further molecular dynamics simulations revealed that the Biselyngbyaside B-DNA gyrase B complex surpassed both EOF and Smenamide A in terms of structural stability, compactness, and strong hydrogen bonding. Umbrella sampling was employed to estimate the binding free energy from thirty sampling simulations, and Biselyngbyaside B exhibited a significantly favourable ΔG bind of -91.66 kJ/mol, outperforming EOF (-68.93 kJ/mol) and Smenamide A (-36.4 kJ/mol). These findings clearly indicate a stronger and more stable interaction between Biselyngbyaside B and GyrB. Biselyngbyaside B continuously showed better pharmacokinetic characteristics, non-hepatotoxicity, and a greater binding affinity than previously documented DNA gyrase B inhibitors. This study emphasizes the integration of molecular dockings, molecular dynamics simulation, umbrella sampling, and ADMET analysis provided crucial quantitative insights into the identification of potent drug-like candidates for further validation. Overall, the Biselyngbyaside B was found to be the most promising lead compound for novel antibacterial drug development targeting DNA gyrase B.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"120 Pt 1\",\"pages\":\"108628\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2025.108628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2025.108628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovery of biselyngbyaside B a novel lead inhibitor of drug-resistant bacteria targeting DNA gyrase B.
Antimicrobial resistance (AMR) poses a growing global threat, with antibiotic-resistant infections becoming a leading cause of death worldwide. The present study explores natural cyanobacterial compounds as possible inhibitors of Escherichia coli DNA gyrase B (GyrB) which is a verified antibacterial target that is not present in higher eukaryotes. Because of the urgent need for novel antibacterial drugs, we identified nine drug-like candidates using lipinski's rule of five and ADMET profiling. Molecular docking revealed that Biselyngbyaside B and Smenamide A exhibited greater binding affinities in comparison to the co-crystallized inhibitor EOF, with a binding energy of -9.03 kcal/mol. Further molecular dynamics simulations revealed that the Biselyngbyaside B-DNA gyrase B complex surpassed both EOF and Smenamide A in terms of structural stability, compactness, and strong hydrogen bonding. Umbrella sampling was employed to estimate the binding free energy from thirty sampling simulations, and Biselyngbyaside B exhibited a significantly favourable ΔG bind of -91.66 kJ/mol, outperforming EOF (-68.93 kJ/mol) and Smenamide A (-36.4 kJ/mol). These findings clearly indicate a stronger and more stable interaction between Biselyngbyaside B and GyrB. Biselyngbyaside B continuously showed better pharmacokinetic characteristics, non-hepatotoxicity, and a greater binding affinity than previously documented DNA gyrase B inhibitors. This study emphasizes the integration of molecular dockings, molecular dynamics simulation, umbrella sampling, and ADMET analysis provided crucial quantitative insights into the identification of potent drug-like candidates for further validation. Overall, the Biselyngbyaside B was found to be the most promising lead compound for novel antibacterial drug development targeting DNA gyrase B.