Jenna L Gollihue, Khine Zin Aung, Colin B Rogers, Leopoldine B Galopin, Nicholas A Wright, Pradoldej Sompol, Erica M Weekman, Yuriko Katsumata, Josh M Morganti, Christopher M Norris
{"title":"在以饮食为基础的脑血管疾病模型中,星形胶质细胞信号的抑制导致小胶质细胞表型的性别特异性变化。","authors":"Jenna L Gollihue, Khine Zin Aung, Colin B Rogers, Leopoldine B Galopin, Nicholas A Wright, Pradoldej Sompol, Erica M Weekman, Yuriko Katsumata, Josh M Morganti, Christopher M Norris","doi":"10.1186/s12974-025-03523-2","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperhomocysteinemia (HHcy)-inducing diets recapitulate cerebral small vessel disease phenotypes in mice including cerebrovascular pathology/dysfunction, neuroinflammation, synaptic deficits, and cognitive decline. We recently showed that astrocyte signaling through calcineurin(CN)/nuclear factor of activated T cells (NFATs) plays a causative role in these phenotypes. Here, we assessed the impact of astrocytic signaling on microglia, which set the inflammatory tone in brain. Seven-to-eight-week-old male and female C57BL/6 J mice received intrahippocampal injections of adeno-associated virus (AAV) expressing EGFP (AAV2/5-Gfa2-EGFP) or AAV expressing the NFAT inhibitor VIVIT (i.e., AAV2/5-Gfa2-VIVIT-EGFP). Mice were then fed with control chow (CT) or B-vitamin-deficient chow for 12 weeks to induce HHcy. Immunohistochemistry and Western blot analyses suggested that expression of the homeostatic microglial marker, P2RY12, responded differently to AAV treatments depending on diet and sex. We next conducted single-cell RNA sequencing (scRNA-seq) to determine if microglial genes and/or clustering patterns were differentially sensitive to diet and AAV, depending on sex. In males, disease-associated microglial genes and subclusters were overrepresented in HHcy-treated mice, while VIVIT promoted the appearance of homeostatic microglial genes and clusters. In contrast, microglial genes in females were less sensitive to diet and AAV treatments, though disease-like patterns were also observed in the HHcy condition. Very few of the HHcy-sensitive microglial genes in females were affected by VIVIT. Though based on small sample sizes, the results suggest a sexually dimorphic influence of astrocyte signaling on microglial transcriptional phenotypes in the context of HHcy and small cerebral vessel disease. However, these interpretations will need to be bolstered with additional biological replicates and more stringent statistical analyses.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"202"},"PeriodicalIF":10.1000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of astrocyte signaling leads to sex-specific changes in microglia phenotypes in a diet-based model of cerebral small vessel disease.\",\"authors\":\"Jenna L Gollihue, Khine Zin Aung, Colin B Rogers, Leopoldine B Galopin, Nicholas A Wright, Pradoldej Sompol, Erica M Weekman, Yuriko Katsumata, Josh M Morganti, Christopher M Norris\",\"doi\":\"10.1186/s12974-025-03523-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperhomocysteinemia (HHcy)-inducing diets recapitulate cerebral small vessel disease phenotypes in mice including cerebrovascular pathology/dysfunction, neuroinflammation, synaptic deficits, and cognitive decline. We recently showed that astrocyte signaling through calcineurin(CN)/nuclear factor of activated T cells (NFATs) plays a causative role in these phenotypes. Here, we assessed the impact of astrocytic signaling on microglia, which set the inflammatory tone in brain. Seven-to-eight-week-old male and female C57BL/6 J mice received intrahippocampal injections of adeno-associated virus (AAV) expressing EGFP (AAV2/5-Gfa2-EGFP) or AAV expressing the NFAT inhibitor VIVIT (i.e., AAV2/5-Gfa2-VIVIT-EGFP). Mice were then fed with control chow (CT) or B-vitamin-deficient chow for 12 weeks to induce HHcy. Immunohistochemistry and Western blot analyses suggested that expression of the homeostatic microglial marker, P2RY12, responded differently to AAV treatments depending on diet and sex. We next conducted single-cell RNA sequencing (scRNA-seq) to determine if microglial genes and/or clustering patterns were differentially sensitive to diet and AAV, depending on sex. In males, disease-associated microglial genes and subclusters were overrepresented in HHcy-treated mice, while VIVIT promoted the appearance of homeostatic microglial genes and clusters. In contrast, microglial genes in females were less sensitive to diet and AAV treatments, though disease-like patterns were also observed in the HHcy condition. Very few of the HHcy-sensitive microglial genes in females were affected by VIVIT. Though based on small sample sizes, the results suggest a sexually dimorphic influence of astrocyte signaling on microglial transcriptional phenotypes in the context of HHcy and small cerebral vessel disease. However, these interpretations will need to be bolstered with additional biological replicates and more stringent statistical analyses.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"202\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-025-03523-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03523-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Inhibition of astrocyte signaling leads to sex-specific changes in microglia phenotypes in a diet-based model of cerebral small vessel disease.
Hyperhomocysteinemia (HHcy)-inducing diets recapitulate cerebral small vessel disease phenotypes in mice including cerebrovascular pathology/dysfunction, neuroinflammation, synaptic deficits, and cognitive decline. We recently showed that astrocyte signaling through calcineurin(CN)/nuclear factor of activated T cells (NFATs) plays a causative role in these phenotypes. Here, we assessed the impact of astrocytic signaling on microglia, which set the inflammatory tone in brain. Seven-to-eight-week-old male and female C57BL/6 J mice received intrahippocampal injections of adeno-associated virus (AAV) expressing EGFP (AAV2/5-Gfa2-EGFP) or AAV expressing the NFAT inhibitor VIVIT (i.e., AAV2/5-Gfa2-VIVIT-EGFP). Mice were then fed with control chow (CT) or B-vitamin-deficient chow for 12 weeks to induce HHcy. Immunohistochemistry and Western blot analyses suggested that expression of the homeostatic microglial marker, P2RY12, responded differently to AAV treatments depending on diet and sex. We next conducted single-cell RNA sequencing (scRNA-seq) to determine if microglial genes and/or clustering patterns were differentially sensitive to diet and AAV, depending on sex. In males, disease-associated microglial genes and subclusters were overrepresented in HHcy-treated mice, while VIVIT promoted the appearance of homeostatic microglial genes and clusters. In contrast, microglial genes in females were less sensitive to diet and AAV treatments, though disease-like patterns were also observed in the HHcy condition. Very few of the HHcy-sensitive microglial genes in females were affected by VIVIT. Though based on small sample sizes, the results suggest a sexually dimorphic influence of astrocyte signaling on microglial transcriptional phenotypes in the context of HHcy and small cerebral vessel disease. However, these interpretations will need to be bolstered with additional biological replicates and more stringent statistical analyses.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.