Daoqi Shen , Liyu Lin , Yiqi Su , Ying Huang , Yaqiong Wang , Jiarui Xu , Wuhua Jiang , Zhen Zhang , Xiaoqiang Ding , Xialian Xu
{"title":"Syndecan-1调节脂质代谢,减轻急性肾损伤向慢性肾病转变过程中的纤维化。","authors":"Daoqi Shen , Liyu Lin , Yiqi Su , Ying Huang , Yaqiong Wang , Jiarui Xu , Wuhua Jiang , Zhen Zhang , Xiaoqiang Ding , Xialian Xu","doi":"10.1016/j.metabol.2025.156374","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is characterized by persistent renal fibrosis, in which abnormal lipid metabolism plays a crucial role. Syndecan-1 (SDC-1) has been implicated in various tissue remodeling processes; however, its role in lipid metabolism and fibrosis during the progression from AKI to CKD is not well understood.</div></div><div><h3>Methods</h3><div>This study used a murine model of unilateral ischemia-reperfusion-induced AKI-to-CKD progression for in vivo analysis and employed transforming growth factor-beta (TGF-β)-induced fibrosis in Human Kidney-2 cells and primary mouse tubular epithelial cells for in vitro studies. The tubule-specific knockout and overexpression of SDC-1 mice were utilized to investigate kidney fibrosis and lipid metabolism.</div></div><div><h3>Results</h3><div>Following unilateral ischemia-reperfusion and TGF-β stimulation, SDC-1 expression was significantly reduced, exacerbating renal fibrosis. Notably, SDC-1 deficiency led to lipid accumulation in the kidneys, while its overexpression alleviated lipid overload and improved metabolic parameters. Furthermore, SDC-1 played a crucial role in regulating fatty acid-binding protein 7 (FABP7), and its absence resulted in increased FABP7 levels. Inhibition of FABP7 not only reduced fibrosis but also restored carnitine palmitoyltransferase 1α expression, which suggests that the SDC-1/FABP7 axis is critical for maintaining lipid homeostasis and mitigating fibrosis in the kidney.</div></div><div><h3>Conclusion</h3><div>These findings underscore the importance of SDC-1 in lipid metabolism and suggest that targeting lipid metabolic pathways may represent therapeutic strategies that can slow the progression of AKI to CKD.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"172 ","pages":"Article 156374"},"PeriodicalIF":11.9000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syndecan-1 regulates lipid metabolism and mitigates fibrosis during the transition from acute kidney injury to chronic kidney disease\",\"authors\":\"Daoqi Shen , Liyu Lin , Yiqi Su , Ying Huang , Yaqiong Wang , Jiarui Xu , Wuhua Jiang , Zhen Zhang , Xiaoqiang Ding , Xialian Xu\",\"doi\":\"10.1016/j.metabol.2025.156374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is characterized by persistent renal fibrosis, in which abnormal lipid metabolism plays a crucial role. Syndecan-1 (SDC-1) has been implicated in various tissue remodeling processes; however, its role in lipid metabolism and fibrosis during the progression from AKI to CKD is not well understood.</div></div><div><h3>Methods</h3><div>This study used a murine model of unilateral ischemia-reperfusion-induced AKI-to-CKD progression for in vivo analysis and employed transforming growth factor-beta (TGF-β)-induced fibrosis in Human Kidney-2 cells and primary mouse tubular epithelial cells for in vitro studies. The tubule-specific knockout and overexpression of SDC-1 mice were utilized to investigate kidney fibrosis and lipid metabolism.</div></div><div><h3>Results</h3><div>Following unilateral ischemia-reperfusion and TGF-β stimulation, SDC-1 expression was significantly reduced, exacerbating renal fibrosis. Notably, SDC-1 deficiency led to lipid accumulation in the kidneys, while its overexpression alleviated lipid overload and improved metabolic parameters. Furthermore, SDC-1 played a crucial role in regulating fatty acid-binding protein 7 (FABP7), and its absence resulted in increased FABP7 levels. Inhibition of FABP7 not only reduced fibrosis but also restored carnitine palmitoyltransferase 1α expression, which suggests that the SDC-1/FABP7 axis is critical for maintaining lipid homeostasis and mitigating fibrosis in the kidney.</div></div><div><h3>Conclusion</h3><div>These findings underscore the importance of SDC-1 in lipid metabolism and suggest that targeting lipid metabolic pathways may represent therapeutic strategies that can slow the progression of AKI to CKD.</div></div>\",\"PeriodicalId\":18694,\"journal\":{\"name\":\"Metabolism: clinical and experimental\",\"volume\":\"172 \",\"pages\":\"Article 156374\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolism: clinical and experimental\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026049525002434\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525002434","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Syndecan-1 regulates lipid metabolism and mitigates fibrosis during the transition from acute kidney injury to chronic kidney disease
Background
The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is characterized by persistent renal fibrosis, in which abnormal lipid metabolism plays a crucial role. Syndecan-1 (SDC-1) has been implicated in various tissue remodeling processes; however, its role in lipid metabolism and fibrosis during the progression from AKI to CKD is not well understood.
Methods
This study used a murine model of unilateral ischemia-reperfusion-induced AKI-to-CKD progression for in vivo analysis and employed transforming growth factor-beta (TGF-β)-induced fibrosis in Human Kidney-2 cells and primary mouse tubular epithelial cells for in vitro studies. The tubule-specific knockout and overexpression of SDC-1 mice were utilized to investigate kidney fibrosis and lipid metabolism.
Results
Following unilateral ischemia-reperfusion and TGF-β stimulation, SDC-1 expression was significantly reduced, exacerbating renal fibrosis. Notably, SDC-1 deficiency led to lipid accumulation in the kidneys, while its overexpression alleviated lipid overload and improved metabolic parameters. Furthermore, SDC-1 played a crucial role in regulating fatty acid-binding protein 7 (FABP7), and its absence resulted in increased FABP7 levels. Inhibition of FABP7 not only reduced fibrosis but also restored carnitine palmitoyltransferase 1α expression, which suggests that the SDC-1/FABP7 axis is critical for maintaining lipid homeostasis and mitigating fibrosis in the kidney.
Conclusion
These findings underscore the importance of SDC-1 in lipid metabolism and suggest that targeting lipid metabolic pathways may represent therapeutic strategies that can slow the progression of AKI to CKD.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism