Mohamed J Saadh, Faris Anad Muhammad, Rafid Jihad Albadr, Suhas Ballal, Abhayveer Singh, Anita Devi, Kamal Kant Joshi, Saida Saidkhodjaeva, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Ali M Ali Al-Nuaimi
{"title":"基于免疫信息学和动力学模拟的马尔堡病毒多表位候选疫苗的结构设计。","authors":"Mohamed J Saadh, Faris Anad Muhammad, Rafid Jihad Albadr, Suhas Ballal, Abhayveer Singh, Anita Devi, Kamal Kant Joshi, Saida Saidkhodjaeva, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Ali M Ali Al-Nuaimi","doi":"10.1016/j.jmgm.2025.109130","DOIUrl":null,"url":null,"abstract":"<p><p>The Marburg virus, a close relative of the Ebola virus, is a menacing Filovirus known for its devastating outbreaks in Germany and recent outbreaks in Guinea and Tanzania. This deadly pathogen triggers severe hemorrhagic fever, posing a grave threat to public health and demanding urgent attention from the global medical community. The amino acid sequence and PDB of the Envelope glycoprotein (GP) were extracted from RCSB for use in predicting epitopes (IEDB server). The construction of the multi-epitope vaccine included an adjuvant and linkers (AAY, EAAAK, GPGPG), which were assessed with the ProtParam tool to characterize their physico-chemical properties. Additionally, modeling was carried out with the Robetta server, and the modeled vaccine was docked with Toll-like receptor 4 (TLR4). Finally, immune and molecular dynamic simulations were implemented using the C-ImmSim and GROMACS packages. The final multi-epitope vaccine consists of 211 amino acids, created with 5 CTL and 4 HTL epitopes that were validated and passed assessments for antigenicity, allergenicity, and toxicity. The modeled multi-epitope vaccine was evaluated and demonstrated high model quality. The best molecular docking candidate was selected and evaluated using PDBsum. Subsequently, by assessing RMSD, RMSF, and Gyration, the molecular dynamic simulation revealed considerable binding with TLR4, and the complex remained stable throughout the simulation. Ultimately, the multi-epitope vaccine can stimulate both humoral and cell-mediated immune responses, validated computationally. The overall implication of this investigation shows the potency of the multi-epitope construct as an efficient protective vaccine against the Marburg virus.</p>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"141 ","pages":"109130"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-based design of a multi-epitope vaccine candidate against marburg virus using immunoinformatics and dynamics simulations.\",\"authors\":\"Mohamed J Saadh, Faris Anad Muhammad, Rafid Jihad Albadr, Suhas Ballal, Abhayveer Singh, Anita Devi, Kamal Kant Joshi, Saida Saidkhodjaeva, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Ali M Ali Al-Nuaimi\",\"doi\":\"10.1016/j.jmgm.2025.109130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Marburg virus, a close relative of the Ebola virus, is a menacing Filovirus known for its devastating outbreaks in Germany and recent outbreaks in Guinea and Tanzania. This deadly pathogen triggers severe hemorrhagic fever, posing a grave threat to public health and demanding urgent attention from the global medical community. The amino acid sequence and PDB of the Envelope glycoprotein (GP) were extracted from RCSB for use in predicting epitopes (IEDB server). The construction of the multi-epitope vaccine included an adjuvant and linkers (AAY, EAAAK, GPGPG), which were assessed with the ProtParam tool to characterize their physico-chemical properties. Additionally, modeling was carried out with the Robetta server, and the modeled vaccine was docked with Toll-like receptor 4 (TLR4). Finally, immune and molecular dynamic simulations were implemented using the C-ImmSim and GROMACS packages. The final multi-epitope vaccine consists of 211 amino acids, created with 5 CTL and 4 HTL epitopes that were validated and passed assessments for antigenicity, allergenicity, and toxicity. The modeled multi-epitope vaccine was evaluated and demonstrated high model quality. The best molecular docking candidate was selected and evaluated using PDBsum. Subsequently, by assessing RMSD, RMSF, and Gyration, the molecular dynamic simulation revealed considerable binding with TLR4, and the complex remained stable throughout the simulation. Ultimately, the multi-epitope vaccine can stimulate both humoral and cell-mediated immune responses, validated computationally. The overall implication of this investigation shows the potency of the multi-epitope construct as an efficient protective vaccine against the Marburg virus.</p>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"141 \",\"pages\":\"109130\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmgm.2025.109130\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmgm.2025.109130","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Structure-based design of a multi-epitope vaccine candidate against marburg virus using immunoinformatics and dynamics simulations.
The Marburg virus, a close relative of the Ebola virus, is a menacing Filovirus known for its devastating outbreaks in Germany and recent outbreaks in Guinea and Tanzania. This deadly pathogen triggers severe hemorrhagic fever, posing a grave threat to public health and demanding urgent attention from the global medical community. The amino acid sequence and PDB of the Envelope glycoprotein (GP) were extracted from RCSB for use in predicting epitopes (IEDB server). The construction of the multi-epitope vaccine included an adjuvant and linkers (AAY, EAAAK, GPGPG), which were assessed with the ProtParam tool to characterize their physico-chemical properties. Additionally, modeling was carried out with the Robetta server, and the modeled vaccine was docked with Toll-like receptor 4 (TLR4). Finally, immune and molecular dynamic simulations were implemented using the C-ImmSim and GROMACS packages. The final multi-epitope vaccine consists of 211 amino acids, created with 5 CTL and 4 HTL epitopes that were validated and passed assessments for antigenicity, allergenicity, and toxicity. The modeled multi-epitope vaccine was evaluated and demonstrated high model quality. The best molecular docking candidate was selected and evaluated using PDBsum. Subsequently, by assessing RMSD, RMSF, and Gyration, the molecular dynamic simulation revealed considerable binding with TLR4, and the complex remained stable throughout the simulation. Ultimately, the multi-epitope vaccine can stimulate both humoral and cell-mediated immune responses, validated computationally. The overall implication of this investigation shows the potency of the multi-epitope construct as an efficient protective vaccine against the Marburg virus.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.