{"title":"原位膜蛋白的固态核磁共振。","authors":"Francesca M Marassi, Guido Pintacuda","doi":"10.1016/j.sbi.2025.103129","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane proteins have evolved to function as part of specialized biological membranes, and their structures and activities are highly susceptible to their local environment. Detergents and lipid mimetics replicate certain aspects of biological membranes, and have been used to produce an exceptional body of structural data, but do not fully capture the complex, asymmetric properties of the native environment and can alter structure and function. Here, we review recent advances in nuclear magnetic resonance (NMR) that enable the examination of membrane protein structure and activity in situ, within native membranes. The development of optimized protein expression strategies, isotopic labeling schemes, powerful instrumentation and specialized pulse sequences offer new opportunities for exploring the new frontier of in situ structural biology. By outlining the framework for in situ NMR of membrane proteins from conceptualization to experiments we hope to inspire new research in this growing and important area.</p>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"103129"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342655/pdf/","citationCount":"0","resultStr":"{\"title\":\"Solid-state NMR of membrane proteins in situ.\",\"authors\":\"Francesca M Marassi, Guido Pintacuda\",\"doi\":\"10.1016/j.sbi.2025.103129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Membrane proteins have evolved to function as part of specialized biological membranes, and their structures and activities are highly susceptible to their local environment. Detergents and lipid mimetics replicate certain aspects of biological membranes, and have been used to produce an exceptional body of structural data, but do not fully capture the complex, asymmetric properties of the native environment and can alter structure and function. Here, we review recent advances in nuclear magnetic resonance (NMR) that enable the examination of membrane protein structure and activity in situ, within native membranes. The development of optimized protein expression strategies, isotopic labeling schemes, powerful instrumentation and specialized pulse sequences offer new opportunities for exploring the new frontier of in situ structural biology. By outlining the framework for in situ NMR of membrane proteins from conceptualization to experiments we hope to inspire new research in this growing and important area.</p>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"94 \",\"pages\":\"103129\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342655/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.sbi.2025.103129\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.sbi.2025.103129","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Membrane proteins have evolved to function as part of specialized biological membranes, and their structures and activities are highly susceptible to their local environment. Detergents and lipid mimetics replicate certain aspects of biological membranes, and have been used to produce an exceptional body of structural data, but do not fully capture the complex, asymmetric properties of the native environment and can alter structure and function. Here, we review recent advances in nuclear magnetic resonance (NMR) that enable the examination of membrane protein structure and activity in situ, within native membranes. The development of optimized protein expression strategies, isotopic labeling schemes, powerful instrumentation and specialized pulse sequences offer new opportunities for exploring the new frontier of in situ structural biology. By outlining the framework for in situ NMR of membrane proteins from conceptualization to experiments we hope to inspire new research in this growing and important area.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation