Xusheng Suo, Chunfeng Meng, Hu Zhou, Yutao Xue, Jie Tao, Aihua Yuan
{"title":"锌阳极集流改性剂的疏水性增强,延长了其使用寿命。","authors":"Xusheng Suo, Chunfeng Meng, Hu Zhou, Yutao Xue, Jie Tao, Aihua Yuan","doi":"10.1016/j.jcis.2025.138633","DOIUrl":null,"url":null,"abstract":"<p><p>Though zinc-ion batteries have gained intensive attention recently, their application prospects have long been hampered by Zn dendrite evolution and water-involved side reactions, especially for thin and highly utilized Zn anodes. Coating a modified layer on the current collector is a common strategy to improve the reversibility of Zn plating/stripping. Hydrophilic modifier with high zincophilicity, usually affords uniform Zn deposition but exhibits intrinsic limitations in repelling water molecules, while hydrophobic modifiers shows excellent water-resistance. To enhance side-reaction inhibition, we increased the hydrophobicity of the CuTCNQ modifier by replacing CuTCNQ with its fluorinated analog, Cu(F4-TCNQ), on the Cu current collector. The hydrophobicity was enhanced, as indicated by a contact angle of 139.2°, which endowed the Zn anode with a remarkably electrochemical longevity by regulating the crystallographic arrangement of Zn metal, and preventing water-involved hydrogen evolution reactions as well as surface corrosion. The symmetric cell with F4-TCNQ@Cu as the anode current collector operated stably for up to 990 h at a current density of 2 mA cm<sup>-2</sup>. This performance surpassed that of bare Cu (190 h) and the hydrophobic analog TCNQ@Cu (450 h). This work provides a new strategy for the design of high-utilization zinc anodes and offers a unique perspective on evaluating the effect of hydrophobicity on the lifespan of Zn battery.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"701 ","pages":"138633"},"PeriodicalIF":9.7000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced hydrophobicity of the current collector modifier for Zn anode endows improved longevity.\",\"authors\":\"Xusheng Suo, Chunfeng Meng, Hu Zhou, Yutao Xue, Jie Tao, Aihua Yuan\",\"doi\":\"10.1016/j.jcis.2025.138633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Though zinc-ion batteries have gained intensive attention recently, their application prospects have long been hampered by Zn dendrite evolution and water-involved side reactions, especially for thin and highly utilized Zn anodes. Coating a modified layer on the current collector is a common strategy to improve the reversibility of Zn plating/stripping. Hydrophilic modifier with high zincophilicity, usually affords uniform Zn deposition but exhibits intrinsic limitations in repelling water molecules, while hydrophobic modifiers shows excellent water-resistance. To enhance side-reaction inhibition, we increased the hydrophobicity of the CuTCNQ modifier by replacing CuTCNQ with its fluorinated analog, Cu(F4-TCNQ), on the Cu current collector. The hydrophobicity was enhanced, as indicated by a contact angle of 139.2°, which endowed the Zn anode with a remarkably electrochemical longevity by regulating the crystallographic arrangement of Zn metal, and preventing water-involved hydrogen evolution reactions as well as surface corrosion. The symmetric cell with F4-TCNQ@Cu as the anode current collector operated stably for up to 990 h at a current density of 2 mA cm<sup>-2</sup>. This performance surpassed that of bare Cu (190 h) and the hydrophobic analog TCNQ@Cu (450 h). This work provides a new strategy for the design of high-utilization zinc anodes and offers a unique perspective on evaluating the effect of hydrophobicity on the lifespan of Zn battery.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"701 \",\"pages\":\"138633\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.138633\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
虽然锌离子电池近年来受到了广泛的关注,但其应用前景一直受到锌枝晶演变和涉及水的副反应的阻碍,特别是对于薄而高利用率的锌阳极。在集电极上涂覆改性层是提高锌电镀/剥离可逆性的常用策略。亲水改性剂具有较高的亲锌性,通常能使锌均匀沉积,但在排斥水分子方面存在固有的局限性,而疏水改性剂具有优异的耐水性。为了增强副反应抑制作用,我们在Cu电流集电极上用其氟化类似物Cu(F4-TCNQ)代替CuTCNQ改性剂,增加了其疏水性。疏水性增强,接触角达到139.2°,通过调节锌金属的晶体排列,防止水参与的析氢反应和表面腐蚀,使锌阳极具有显著的电化学寿命。以F4-TCNQ@Cu为阳极集流器的对称电池在2 mA cm-2的电流密度下稳定工作长达990小时。该性能优于裸Cu (190 h)和疏水类似物TCNQ@Cu (450 h)。本研究为高利用率锌阳极的设计提供了一种新的策略,并为评价疏水性对锌电池寿命的影响提供了独特的视角。
Enhanced hydrophobicity of the current collector modifier for Zn anode endows improved longevity.
Though zinc-ion batteries have gained intensive attention recently, their application prospects have long been hampered by Zn dendrite evolution and water-involved side reactions, especially for thin and highly utilized Zn anodes. Coating a modified layer on the current collector is a common strategy to improve the reversibility of Zn plating/stripping. Hydrophilic modifier with high zincophilicity, usually affords uniform Zn deposition but exhibits intrinsic limitations in repelling water molecules, while hydrophobic modifiers shows excellent water-resistance. To enhance side-reaction inhibition, we increased the hydrophobicity of the CuTCNQ modifier by replacing CuTCNQ with its fluorinated analog, Cu(F4-TCNQ), on the Cu current collector. The hydrophobicity was enhanced, as indicated by a contact angle of 139.2°, which endowed the Zn anode with a remarkably electrochemical longevity by regulating the crystallographic arrangement of Zn metal, and preventing water-involved hydrogen evolution reactions as well as surface corrosion. The symmetric cell with F4-TCNQ@Cu as the anode current collector operated stably for up to 990 h at a current density of 2 mA cm-2. This performance surpassed that of bare Cu (190 h) and the hydrophobic analog TCNQ@Cu (450 h). This work provides a new strategy for the design of high-utilization zinc anodes and offers a unique perspective on evaluating the effect of hydrophobicity on the lifespan of Zn battery.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies