S-scheme Sb2O3/g-C3N4异质结光催化CO2和Cr(VI)还原的构建

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-12-15 Epub Date: 2025-08-06 DOI:10.1016/j.jcis.2025.138648
Penghui Yang, Jiaqi Yang, Xinyu Zen, Yuyang Gong, Junbo Zhong
{"title":"S-scheme Sb2O3/g-C3N4异质结光催化CO2和Cr(VI)还原的构建","authors":"Penghui Yang, Jiaqi Yang, Xinyu Zen, Yuyang Gong, Junbo Zhong","doi":"10.1016/j.jcis.2025.138648","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic CO<sub>2</sub> reduction is a promising strategy to address excessive CO<sub>2</sub> emissions. g-C<sub>3</sub>N<sub>4</sub> photocatalyst has attracted widespread attention due to its appropriate bandgap and low toxicity. However, the rapid recombination of electron-hole pairs and the limited number of active sites severely restrict its practical application. In this study, we reported S-scheme Sb<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions. Introducing Sb<sub>2</sub>O<sub>3</sub> onto g-C<sub>3</sub>N<sub>4</sub> enhances active sites and adsorption capacity, and improves photogenerated carriers separation efficiency via heterojunction formation. Under simulated solar light irradiation, the Sb<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions exhibits superior photocatalytic CO<sub>2</sub> reduction performance relative to the reference Sb<sub>2</sub>O<sub>3</sub> and g-C<sub>3</sub>N<sub>4</sub>. In-situ X-ray photoelectron spectroscopy (In-situ XPS), surface photovoltage spectroscopy (SPS), electron paramagnetic resonance (EPR) and ultraviolet photoelectron spectroscopy (UPS) further reveal the electron transfer mechanism in heterojunctions. In-situ diffuse reflectance Fourier transform infrared (DRIFTS) spectroscopy provides insight into the dynamic behavior of CO<sub>2</sub> into CO and CH<sub>4</sub>. This work offers a feasible strategy for developing high-performance g-C<sub>3</sub>N<sub>4</sub> photocatalysts to address environmental challenges.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 Pt 3","pages":"138648"},"PeriodicalIF":9.7000,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of S-scheme Sb<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions for photocatalytic CO<sub>2</sub> and Cr(VI) reduction.\",\"authors\":\"Penghui Yang, Jiaqi Yang, Xinyu Zen, Yuyang Gong, Junbo Zhong\",\"doi\":\"10.1016/j.jcis.2025.138648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photocatalytic CO<sub>2</sub> reduction is a promising strategy to address excessive CO<sub>2</sub> emissions. g-C<sub>3</sub>N<sub>4</sub> photocatalyst has attracted widespread attention due to its appropriate bandgap and low toxicity. However, the rapid recombination of electron-hole pairs and the limited number of active sites severely restrict its practical application. In this study, we reported S-scheme Sb<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions. Introducing Sb<sub>2</sub>O<sub>3</sub> onto g-C<sub>3</sub>N<sub>4</sub> enhances active sites and adsorption capacity, and improves photogenerated carriers separation efficiency via heterojunction formation. Under simulated solar light irradiation, the Sb<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions exhibits superior photocatalytic CO<sub>2</sub> reduction performance relative to the reference Sb<sub>2</sub>O<sub>3</sub> and g-C<sub>3</sub>N<sub>4</sub>. In-situ X-ray photoelectron spectroscopy (In-situ XPS), surface photovoltage spectroscopy (SPS), electron paramagnetic resonance (EPR) and ultraviolet photoelectron spectroscopy (UPS) further reveal the electron transfer mechanism in heterojunctions. In-situ diffuse reflectance Fourier transform infrared (DRIFTS) spectroscopy provides insight into the dynamic behavior of CO<sub>2</sub> into CO and CH<sub>4</sub>. This work offers a feasible strategy for developing high-performance g-C<sub>3</sub>N<sub>4</sub> photocatalysts to address environmental challenges.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"700 Pt 3\",\"pages\":\"138648\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.138648\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138648","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化CO2还原是解决过量CO2排放的一种很有前途的策略。g-C3N4光催化剂因其合适的带隙和低毒性而受到广泛关注。然而,电子-空穴对的快速复合和有限的活性位点严重限制了其实际应用。在这项研究中,我们报道了S-scheme Sb2O3/g-C3N4异质结。在g-C3N4上引入Sb2O3可以提高活性位点和吸附能力,并通过异质结的形成提高光生载流子的分离效率。在模拟太阳光照下,Sb2O3/g-C3N4异质结表现出比参考Sb2O3和g-C3N4更好的光催化CO2还原性能。原位x射线光电子能谱(situ XPS)、表面光电压能谱(SPS)、电子顺磁共振(EPR)和紫外光电子能谱(UPS)进一步揭示了异质结中的电子转移机制。原位漫反射傅里叶变换红外光谱(DRIFTS)提供了洞察CO2到CO和CH4的动态行为。这项工作为开发高性能g-C3N4光催化剂以应对环境挑战提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of S-scheme Sb2O3/g-C3N4 heterojunctions for photocatalytic CO2 and Cr(VI) reduction.

Photocatalytic CO2 reduction is a promising strategy to address excessive CO2 emissions. g-C3N4 photocatalyst has attracted widespread attention due to its appropriate bandgap and low toxicity. However, the rapid recombination of electron-hole pairs and the limited number of active sites severely restrict its practical application. In this study, we reported S-scheme Sb2O3/g-C3N4 heterojunctions. Introducing Sb2O3 onto g-C3N4 enhances active sites and adsorption capacity, and improves photogenerated carriers separation efficiency via heterojunction formation. Under simulated solar light irradiation, the Sb2O3/g-C3N4 heterojunctions exhibits superior photocatalytic CO2 reduction performance relative to the reference Sb2O3 and g-C3N4. In-situ X-ray photoelectron spectroscopy (In-situ XPS), surface photovoltage spectroscopy (SPS), electron paramagnetic resonance (EPR) and ultraviolet photoelectron spectroscopy (UPS) further reveal the electron transfer mechanism in heterojunctions. In-situ diffuse reflectance Fourier transform infrared (DRIFTS) spectroscopy provides insight into the dynamic behavior of CO2 into CO and CH4. This work offers a feasible strategy for developing high-performance g-C3N4 photocatalysts to address environmental challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信