刺穿仿射空间中自同态的朴素同伦类上的单群结构

IF 0.5 4区 数学 Q2 MATHEMATICS
Thomas Brazelton, William Hornslien
{"title":"刺穿仿射空间中自同态的朴素同伦类上的单群结构","authors":"Thomas Brazelton,&nbsp;William Hornslien","doi":"10.1007/s40062-025-00373-w","DOIUrl":null,"url":null,"abstract":"<div><p>Cazanave proved that the set of naive <span>\\(\\mathbb {A}^1\\)</span>-homotopy classes of endomorphisms of the projective line admits a monoid structure whose group completion is genuine <span>\\(\\mathbb {A}^1\\)</span>-homotopy classes of endomorphisms of the projective line. In this very short note we show that, over a field which is not quadratically closed, such a statement is never true for punctured affine space <span>\\(\\mathbb {A}^n\\hspace{-0.1em}\\smallsetminus \\{0\\}\\)</span> for <span>\\(n\\ge 2\\)</span>.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 3","pages":"387 - 390"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concerning monoid structures on naive homotopy classes of endomorphisms of punctured affine space\",\"authors\":\"Thomas Brazelton,&nbsp;William Hornslien\",\"doi\":\"10.1007/s40062-025-00373-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cazanave proved that the set of naive <span>\\\\(\\\\mathbb {A}^1\\\\)</span>-homotopy classes of endomorphisms of the projective line admits a monoid structure whose group completion is genuine <span>\\\\(\\\\mathbb {A}^1\\\\)</span>-homotopy classes of endomorphisms of the projective line. In this very short note we show that, over a field which is not quadratically closed, such a statement is never true for punctured affine space <span>\\\\(\\\\mathbb {A}^n\\\\hspace{-0.1em}\\\\smallsetminus \\\\{0\\\\}\\\\)</span> for <span>\\\\(n\\\\ge 2\\\\)</span>.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"20 3\",\"pages\":\"387 - 390\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-025-00373-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00373-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Cazanave证明了射影线自同态的朴素\(\mathbb {A}^1\) -同伦类集合允许一个群补全为射影线自同态的真\(\mathbb {A}^1\) -同伦类的单似结构。在这篇简短的笔记中,我们证明,在一个非二次封闭的域上,对于\(n\ge 2\)的刺穿仿射空间\(\mathbb {A}^n\hspace{-0.1em}\smallsetminus \{0\}\),这样的陈述永远不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concerning monoid structures on naive homotopy classes of endomorphisms of punctured affine space

Cazanave proved that the set of naive \(\mathbb {A}^1\)-homotopy classes of endomorphisms of the projective line admits a monoid structure whose group completion is genuine \(\mathbb {A}^1\)-homotopy classes of endomorphisms of the projective line. In this very short note we show that, over a field which is not quadratically closed, such a statement is never true for punctured affine space \(\mathbb {A}^n\hspace{-0.1em}\smallsetminus \{0\}\) for \(n\ge 2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信