分数阶Dunkl变换的定性不确定性原理

Q2 Mathematics
F. Elgadiri, A. Akhlidj, E. Bendib
{"title":"分数阶Dunkl变换的定性不确定性原理","authors":"F. Elgadiri,&nbsp;A. Akhlidj,&nbsp;E. Bendib","doi":"10.1007/s11565-025-00606-z","DOIUrl":null,"url":null,"abstract":"<div><p>The fractional Dunkl transform (FrDT) is a natural extension of the classical Dunkl transform <span>\\(\\mathcal {D}_\\mu \\)</span>. In this paper, we establish two qualitative uncertainty principles associated with the FrDT. The first result is a Cowling–Price-type theorem, in which we study the decay properties of two fractional Dunkl transformations for two different angles <span>\\(\\alpha \\)</span> and <span>\\(\\gamma \\)</span>, assuming the angular difference satisfies <span>\\(\\gamma - \\alpha \\ne n\\pi \\)</span> for all <span>\\(n \\in {\\mathbb {Z}}\\)</span>. The second result is an <span>\\(L^p\\)</span>–<span>\\(L^q\\)</span> version of Morgan’s theorem in the context of the FrDT. These results generalize classical uncertainty principles by imposing joint constraints on the decay behavior of a function and its fractional Dunkl transform.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some qualitative uncertainty principles for the Fractional Dunkl Transform\",\"authors\":\"F. Elgadiri,&nbsp;A. Akhlidj,&nbsp;E. Bendib\",\"doi\":\"10.1007/s11565-025-00606-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fractional Dunkl transform (FrDT) is a natural extension of the classical Dunkl transform <span>\\\\(\\\\mathcal {D}_\\\\mu \\\\)</span>. In this paper, we establish two qualitative uncertainty principles associated with the FrDT. The first result is a Cowling–Price-type theorem, in which we study the decay properties of two fractional Dunkl transformations for two different angles <span>\\\\(\\\\alpha \\\\)</span> and <span>\\\\(\\\\gamma \\\\)</span>, assuming the angular difference satisfies <span>\\\\(\\\\gamma - \\\\alpha \\\\ne n\\\\pi \\\\)</span> for all <span>\\\\(n \\\\in {\\\\mathbb {Z}}\\\\)</span>. The second result is an <span>\\\\(L^p\\\\)</span>–<span>\\\\(L^q\\\\)</span> version of Morgan’s theorem in the context of the FrDT. These results generalize classical uncertainty principles by imposing joint constraints on the decay behavior of a function and its fractional Dunkl transform.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00606-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00606-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

分数阶Dunkl变换(FrDT)是经典Dunkl变换的自然扩展\(\mathcal {D}_\mu \)。在本文中,我们建立了两个定性不确定性原则与FrDT相关。第一个结果是一个cowling - price型定理,其中我们研究了两个分数阶Dunkl变换对两个不同角度\(\alpha \)和\(\gamma \)的衰减性质,假设角差对所有\(n \in {\mathbb {Z}}\)都满足\(\gamma - \alpha \ne n\pi \)。第二个结果是在FrDT背景下的一个\(L^p\) - \(L^q\)版本的摩根定理。这些结果通过对函数及其分数阶Dunkl变换的衰减行为施加联合约束来推广经典不确定性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some qualitative uncertainty principles for the Fractional Dunkl Transform

The fractional Dunkl transform (FrDT) is a natural extension of the classical Dunkl transform \(\mathcal {D}_\mu \). In this paper, we establish two qualitative uncertainty principles associated with the FrDT. The first result is a Cowling–Price-type theorem, in which we study the decay properties of two fractional Dunkl transformations for two different angles \(\alpha \) and \(\gamma \), assuming the angular difference satisfies \(\gamma - \alpha \ne n\pi \) for all \(n \in {\mathbb {Z}}\). The second result is an \(L^p\)\(L^q\) version of Morgan’s theorem in the context of the FrDT. These results generalize classical uncertainty principles by imposing joint constraints on the decay behavior of a function and its fractional Dunkl transform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信