原子尺度表征:显微镜、光谱学和机器学习进展综述

Obinna Onyebuchi Barah, Mushabe David, Malisaba Joseph
{"title":"原子尺度表征:显微镜、光谱学和机器学习进展综述","authors":"Obinna Onyebuchi Barah,&nbsp;Mushabe David,&nbsp;Malisaba Joseph","doi":"10.1186/s42252-025-00073-x","DOIUrl":null,"url":null,"abstract":"<div><p>Atomic-scale characterization is pivotal in elucidating structure–property relationships across quantum materials, energy systems, and biological nanostructures. This review critically examines recent advances in high-resolution imaging, aberration-corrected TEM/STEM, cryo-EM, scanning probe microscopy (SPM), and helium ion microscopy (HIM), alongside spectroscopies such as electron energy loss spectroscopy (EELS), tip-enhanced Raman spectroscopy (TERS), and atom probe tomography (APT). Particular focus is placed on their integration with in-situ/operando environments and AI-driven workflows, enabling real-time, multimodal analysis at sub-ångström resolutions. We propose a unified framework combining machine learning, unsupervised clustering, and automated data pipelines to accelerate insight extraction and materials design. Case studies highlight this convergence: perovskite solar cells reached 25.7% efficiency through defect passivation guided by TEM; silicon–carbon anodes retained over 80% capacity across 1,000 cycles via nanostructure-informed optimization; cryo-EM resolved biomolecular assemblies below 2 Å with direct electron detection; and 4D-STEM enabled atomic-scale 3D reconstructions in cathodes with 0.3 nm precision. These tools have revealed critical structure–function linkages, such as lithium heterogeneity in nickel-manganese-cobalt (NMC) cathodes driving capacity fade, and PbI₂ segregation at perovskite grain boundaries impairing photovoltaic performance. Persistent challenges-resolution-dose tradeoffs, dataset reproducibility, and global disparities in instrumentation access are also assessed. Future directions include quantum-enhanced metrology and cloud-based remote experimentation. This review presents an integrated, forward-looking perspective on the fusion of atomic-scale metrology and autonomous experimentation, outlining a strategic roadmap to accelerate materials discovery while foregrounding sustainability, equity, and open-access principles often overlooked in prior literature.</p></div>","PeriodicalId":576,"journal":{"name":"Functional Composite Materials","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmscomposites.springeropen.com/counter/pdf/10.1186/s42252-025-00073-x","citationCount":"0","resultStr":"{\"title\":\"Atomic-scale characterization: a review of advances in microscopy, spectroscopy, and machine learning\",\"authors\":\"Obinna Onyebuchi Barah,&nbsp;Mushabe David,&nbsp;Malisaba Joseph\",\"doi\":\"10.1186/s42252-025-00073-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atomic-scale characterization is pivotal in elucidating structure–property relationships across quantum materials, energy systems, and biological nanostructures. This review critically examines recent advances in high-resolution imaging, aberration-corrected TEM/STEM, cryo-EM, scanning probe microscopy (SPM), and helium ion microscopy (HIM), alongside spectroscopies such as electron energy loss spectroscopy (EELS), tip-enhanced Raman spectroscopy (TERS), and atom probe tomography (APT). Particular focus is placed on their integration with in-situ/operando environments and AI-driven workflows, enabling real-time, multimodal analysis at sub-ångström resolutions. We propose a unified framework combining machine learning, unsupervised clustering, and automated data pipelines to accelerate insight extraction and materials design. Case studies highlight this convergence: perovskite solar cells reached 25.7% efficiency through defect passivation guided by TEM; silicon–carbon anodes retained over 80% capacity across 1,000 cycles via nanostructure-informed optimization; cryo-EM resolved biomolecular assemblies below 2 Å with direct electron detection; and 4D-STEM enabled atomic-scale 3D reconstructions in cathodes with 0.3 nm precision. These tools have revealed critical structure–function linkages, such as lithium heterogeneity in nickel-manganese-cobalt (NMC) cathodes driving capacity fade, and PbI₂ segregation at perovskite grain boundaries impairing photovoltaic performance. Persistent challenges-resolution-dose tradeoffs, dataset reproducibility, and global disparities in instrumentation access are also assessed. Future directions include quantum-enhanced metrology and cloud-based remote experimentation. This review presents an integrated, forward-looking perspective on the fusion of atomic-scale metrology and autonomous experimentation, outlining a strategic roadmap to accelerate materials discovery while foregrounding sustainability, equity, and open-access principles often overlooked in prior literature.</p></div>\",\"PeriodicalId\":576,\"journal\":{\"name\":\"Functional Composite Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmscomposites.springeropen.com/counter/pdf/10.1186/s42252-025-00073-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composite Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42252-025-00073-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composite Materials","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s42252-025-00073-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原子尺度表征在阐明跨量子材料、能量系统和生物纳米结构的结构-性质关系方面至关重要。本文综述了高分辨率成像、像差校正TEM/STEM、冷冻电镜、扫描探针显微镜(SPM)和氦离子显微镜(HIM)的最新进展,以及电子能量损失光谱(EELS)、尖端增强拉曼光谱(TERS)和原子探针断层扫描(APT)等光谱。特别关注的是它们与原位/operando环境和人工智能驱动的工作流程的集成,实现了次-ångström分辨率的实时多模态分析。我们提出了一个结合机器学习、无监督聚类和自动化数据管道的统一框架,以加速洞察提取和材料设计。案例研究强调了这种收敛性:钙钛矿太阳能电池通过TEM引导缺陷钝化达到25.7%的效率;通过纳米结构优化,硅碳阳极在1000次循环中保持了80%以上的容量;低温电子显微镜通过直接电子检测解析2 Å以下的生物分子组件;以及3D - stem支持的阴极原子级3D重建,精度为0.3 nm。这些工具揭示了关键的结构-功能联系,例如镍锰钴(NMC)阴极中的锂非均质性驱动容量衰减,以及钙钛矿晶界处的PbI 2偏析会损害光伏性能。还评估了持续的挑战-分辨率-剂量权衡,数据集可重复性和仪器获取的全球差异。未来的方向包括量子增强计量和基于云的远程实验。这篇综述对原子尺度计量和自主实验的融合提出了一个综合的、前瞻性的观点,概述了加速材料发现的战略路线图,同时强调了可持续性、公平性和开放获取原则,这些原则在以前的文献中经常被忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic-scale characterization: a review of advances in microscopy, spectroscopy, and machine learning

Atomic-scale characterization is pivotal in elucidating structure–property relationships across quantum materials, energy systems, and biological nanostructures. This review critically examines recent advances in high-resolution imaging, aberration-corrected TEM/STEM, cryo-EM, scanning probe microscopy (SPM), and helium ion microscopy (HIM), alongside spectroscopies such as electron energy loss spectroscopy (EELS), tip-enhanced Raman spectroscopy (TERS), and atom probe tomography (APT). Particular focus is placed on their integration with in-situ/operando environments and AI-driven workflows, enabling real-time, multimodal analysis at sub-ångström resolutions. We propose a unified framework combining machine learning, unsupervised clustering, and automated data pipelines to accelerate insight extraction and materials design. Case studies highlight this convergence: perovskite solar cells reached 25.7% efficiency through defect passivation guided by TEM; silicon–carbon anodes retained over 80% capacity across 1,000 cycles via nanostructure-informed optimization; cryo-EM resolved biomolecular assemblies below 2 Å with direct electron detection; and 4D-STEM enabled atomic-scale 3D reconstructions in cathodes with 0.3 nm precision. These tools have revealed critical structure–function linkages, such as lithium heterogeneity in nickel-manganese-cobalt (NMC) cathodes driving capacity fade, and PbI₂ segregation at perovskite grain boundaries impairing photovoltaic performance. Persistent challenges-resolution-dose tradeoffs, dataset reproducibility, and global disparities in instrumentation access are also assessed. Future directions include quantum-enhanced metrology and cloud-based remote experimentation. This review presents an integrated, forward-looking perspective on the fusion of atomic-scale metrology and autonomous experimentation, outlining a strategic roadmap to accelerate materials discovery while foregrounding sustainability, equity, and open-access principles often overlooked in prior literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信