的虚上同调维上的显式锐循环 \(\textrm{SL}_n(\mathbb {Z})\)

IF 0.5 4区 数学 Q2 MATHEMATICS
Avner Ash, Paul E. Gunnells, Mark McConnell
{"title":"的虚上同调维上的显式锐循环 \\(\\textrm{SL}_n(\\mathbb {Z})\\)","authors":"Avner Ash,&nbsp;Paul E. Gunnells,&nbsp;Mark McConnell","doi":"10.1007/s40062-025-00374-9","DOIUrl":null,"url":null,"abstract":"<div><p>Denote the virtual cohomological dimension of <span>\\(\\textrm{SL}_n(\\mathbb {Z})\\)</span> by <span>\\(t=n(n-1)/2\\)</span>. Let <i>St</i> denote the Steinberg module of <span>\\(\\textrm{SL}_n(\\mathbb {Q})\\)</span> tensored with <span>\\(\\mathbb {Q}\\)</span>. Let <span>\\(Sh_\\bullet \\rightarrow St\\)</span> denote the sharbly resolution of the Steinberg module. By Borel–Serre duality, the one-dimensional <span>\\(\\mathbb {Q}\\)</span>-vector space <span>\\(H^0(\\textrm{SL}_n(\\mathbb {Z}), \\mathbb {Q})\\)</span> is isomorphic to <span>\\(H_t(\\textrm{SL}_n(\\mathbb {Z}),St)\\)</span>. We find an explicit generator of <span>\\(H_t(\\textrm{SL}_n(\\mathbb {Z}),St)\\)</span> in terms of sharbly cycles and cosharbly cocycles. These methods may extend to other degrees of cohomology of <span>\\(\\textrm{SL}_n(\\mathbb {Z})\\)</span>.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 3","pages":"391 - 416"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit sharbly cycles at the virtual cohomological dimension for \\\\(\\\\textrm{SL}_n(\\\\mathbb {Z})\\\\)\",\"authors\":\"Avner Ash,&nbsp;Paul E. Gunnells,&nbsp;Mark McConnell\",\"doi\":\"10.1007/s40062-025-00374-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Denote the virtual cohomological dimension of <span>\\\\(\\\\textrm{SL}_n(\\\\mathbb {Z})\\\\)</span> by <span>\\\\(t=n(n-1)/2\\\\)</span>. Let <i>St</i> denote the Steinberg module of <span>\\\\(\\\\textrm{SL}_n(\\\\mathbb {Q})\\\\)</span> tensored with <span>\\\\(\\\\mathbb {Q}\\\\)</span>. Let <span>\\\\(Sh_\\\\bullet \\\\rightarrow St\\\\)</span> denote the sharbly resolution of the Steinberg module. By Borel–Serre duality, the one-dimensional <span>\\\\(\\\\mathbb {Q}\\\\)</span>-vector space <span>\\\\(H^0(\\\\textrm{SL}_n(\\\\mathbb {Z}), \\\\mathbb {Q})\\\\)</span> is isomorphic to <span>\\\\(H_t(\\\\textrm{SL}_n(\\\\mathbb {Z}),St)\\\\)</span>. We find an explicit generator of <span>\\\\(H_t(\\\\textrm{SL}_n(\\\\mathbb {Z}),St)\\\\)</span> in terms of sharbly cycles and cosharbly cocycles. These methods may extend to other degrees of cohomology of <span>\\\\(\\\\textrm{SL}_n(\\\\mathbb {Z})\\\\)</span>.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"20 3\",\"pages\":\"391 - 416\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-025-00374-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00374-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用\(t=n(n-1)/2\)表示\(\textrm{SL}_n(\mathbb {Z})\)的虚上同维数。设St表示\(\textrm{SL}_n(\mathbb {Q})\)与\(\mathbb {Q}\)相关联的Steinberg模块。让\(Sh_\bullet \rightarrow St\)表示斯坦伯格模块的清晰分辨率。通过Borel-Serre对偶性,一维\(\mathbb {Q}\) -向量空间\(H^0(\textrm{SL}_n(\mathbb {Z}), \mathbb {Q})\)与\(H_t(\textrm{SL}_n(\mathbb {Z}),St)\)同构。我们找到了一个关于sharbly环和cosharbly环的显式生成器\(H_t(\textrm{SL}_n(\mathbb {Z}),St)\)。这些方法可以扩展到\(\textrm{SL}_n(\mathbb {Z})\)的其他上同调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit sharbly cycles at the virtual cohomological dimension for \(\textrm{SL}_n(\mathbb {Z})\)

Denote the virtual cohomological dimension of \(\textrm{SL}_n(\mathbb {Z})\) by \(t=n(n-1)/2\). Let St denote the Steinberg module of \(\textrm{SL}_n(\mathbb {Q})\) tensored with \(\mathbb {Q}\). Let \(Sh_\bullet \rightarrow St\) denote the sharbly resolution of the Steinberg module. By Borel–Serre duality, the one-dimensional \(\mathbb {Q}\)-vector space \(H^0(\textrm{SL}_n(\mathbb {Z}), \mathbb {Q})\) is isomorphic to \(H_t(\textrm{SL}_n(\mathbb {Z}),St)\). We find an explicit generator of \(H_t(\textrm{SL}_n(\mathbb {Z}),St)\) in terms of sharbly cycles and cosharbly cocycles. These methods may extend to other degrees of cohomology of \(\textrm{SL}_n(\mathbb {Z})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信