学习自主交易股票:将不确定性纳入交易策略

Yuyang Li, Minghui Liwang, Li Li
{"title":"学习自主交易股票:将不确定性纳入交易策略","authors":"Yuyang Li,&nbsp;Minghui Liwang,&nbsp;Li Li","doi":"10.1007/s43684-025-00101-4","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning, a revolutionary and advanced technology, has been widely applied in the field of stock trading. However, training an autonomous trading strategy which can effectively balance risk and Return On Investment without human supervision in the stock market with high uncertainty is still a bottleneck. This paper constructs a Bayesian-inferenced Gated Recurrent Unit architecture to support long-term stock price prediction based on characteristics of the stock information learned from historical data, augmented with memory of recent up- and-down fluctuations occur in the data of short-term stock movement. The Gated Recurrent Unit architecture incorporates uncertainty estimation into the prediction process, which take care of decision-making in an ever-changing dynamic environment. Three trading strategies were implemented in this model; namely, a Price Model Strategy, a Probabilistic Model Strategy, and a Bayesian Gated Recurrent Unit Strategy, each leveraging the respective model’s outputs to optimize trading decisions. The experimental results show that, compared with the standard Gated Recurrent Unit models, the modified model exhibits a huge tremendous/dramatic advantage in managing volatility and improving return on investment Return On Investment. The results and findings underscore the significant potential of combining Bayesian inference with machine learning to operate effectively in chaotic decision-making environments.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-025-00101-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Learning to trade autonomously in stocks and shares: integrating uncertainty into trading strategies\",\"authors\":\"Yuyang Li,&nbsp;Minghui Liwang,&nbsp;Li Li\",\"doi\":\"10.1007/s43684-025-00101-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning, a revolutionary and advanced technology, has been widely applied in the field of stock trading. However, training an autonomous trading strategy which can effectively balance risk and Return On Investment without human supervision in the stock market with high uncertainty is still a bottleneck. This paper constructs a Bayesian-inferenced Gated Recurrent Unit architecture to support long-term stock price prediction based on characteristics of the stock information learned from historical data, augmented with memory of recent up- and-down fluctuations occur in the data of short-term stock movement. The Gated Recurrent Unit architecture incorporates uncertainty estimation into the prediction process, which take care of decision-making in an ever-changing dynamic environment. Three trading strategies were implemented in this model; namely, a Price Model Strategy, a Probabilistic Model Strategy, and a Bayesian Gated Recurrent Unit Strategy, each leveraging the respective model’s outputs to optimize trading decisions. The experimental results show that, compared with the standard Gated Recurrent Unit models, the modified model exhibits a huge tremendous/dramatic advantage in managing volatility and improving return on investment Return On Investment. The results and findings underscore the significant potential of combining Bayesian inference with machine learning to operate effectively in chaotic decision-making environments.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-025-00101-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-025-00101-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-025-00101-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习是一项革命性的先进技术,在股票交易领域得到了广泛的应用。然而,在具有高度不确定性的股票市场中,训练一种能够在无人监督的情况下有效平衡风险和投资回报的自主交易策略仍然是一个瓶颈。本文构建了一个贝叶斯推理的门控循环单元架构,基于从历史数据中学习到的股票信息的特征来支持长期股票价格预测,并增强了短期股票运动数据中近期涨跌波动的记忆。门控循环单元体系结构将不确定性估计纳入预测过程,在不断变化的动态环境中进行决策。该模型实现了三种交易策略;即价格模型策略、概率模型策略和贝叶斯门控循环单元策略,每种策略都利用各自模型的输出来优化交易决策。实验结果表明,与标准的门控循环单元模型相比,改进后的模型在管理波动率和提高投资回报率方面具有巨大的优势。结果和发现强调了将贝叶斯推理与机器学习结合起来在混乱的决策环境中有效运行的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to trade autonomously in stocks and shares: integrating uncertainty into trading strategies

Machine learning, a revolutionary and advanced technology, has been widely applied in the field of stock trading. However, training an autonomous trading strategy which can effectively balance risk and Return On Investment without human supervision in the stock market with high uncertainty is still a bottleneck. This paper constructs a Bayesian-inferenced Gated Recurrent Unit architecture to support long-term stock price prediction based on characteristics of the stock information learned from historical data, augmented with memory of recent up- and-down fluctuations occur in the data of short-term stock movement. The Gated Recurrent Unit architecture incorporates uncertainty estimation into the prediction process, which take care of decision-making in an ever-changing dynamic environment. Three trading strategies were implemented in this model; namely, a Price Model Strategy, a Probabilistic Model Strategy, and a Bayesian Gated Recurrent Unit Strategy, each leveraging the respective model’s outputs to optimize trading decisions. The experimental results show that, compared with the standard Gated Recurrent Unit models, the modified model exhibits a huge tremendous/dramatic advantage in managing volatility and improving return on investment Return On Investment. The results and findings underscore the significant potential of combining Bayesian inference with machine learning to operate effectively in chaotic decision-making environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信