稀土杂络合物的晶体工程:氧化膦配体控制,pom定向组装和性能指标

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-07-15 DOI:10.1039/D5CE00455A
Jian-Jie Xu, Lin-Lin Wang, Ying-Long Wang, Gui-Xiong Guo, Jian-Ming Liu, Li-Xiong Dai, Min Liu and Qiong-Hua Jin
{"title":"稀土杂络合物的晶体工程:氧化膦配体控制,pom定向组装和性能指标","authors":"Jian-Jie Xu, Lin-Lin Wang, Ying-Long Wang, Gui-Xiong Guo, Jian-Ming Liu, Li-Xiong Dai, Min Liu and Qiong-Hua Jin","doi":"10.1039/D5CE00455A","DOIUrl":null,"url":null,"abstract":"<p >This study explores crystal engineering strategies for rare earth heteroleptic complexes, focusing on ligand design, supramolecular control, and functional performance. Phosphine oxide ligands (TPPO) synergize steric/electronic effects to stabilize coordination geometries, while mixed-ligand systems (<em>e.g.</em>, TPPO/phen) enhance Eu<small><sup>3+</sup></small> luminescence (26.88% quantum yield). Polyoxometalates (POMs) template 3D architectures <em>via</em> hydrogen/charge interactions, enabling &gt;95% photocatalytic dye degradation and &gt;200 °C thermal stability. Rare earth-transition metal systems integrate 2D/3D topologies and multifunctionality (luminescence, gas adsorption) through electronic coupling. Additionally, carbon-based oxygen ligand systems (<em>e.g.</em>, β-diketonates) demonstrate the applicability of these core strategies—leveraging synergistic N-donor coordination and supramolecular interactions to achieve advanced functionalities like temperature-responsive luminescence. Future work will prioritize flexible ligand engineering and stimuli-responsive designs for applications in clean energy and quantum technologies, establishing a roadmap for advanced rare earth materials.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 32","pages":" 5389-5397"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00455a?page=search","citationCount":"0","resultStr":"{\"title\":\"Crystal engineering of rare earth heteroleptic complexes: phosphine oxide ligand control, POM-directed assembly, and performance metrics\",\"authors\":\"Jian-Jie Xu, Lin-Lin Wang, Ying-Long Wang, Gui-Xiong Guo, Jian-Ming Liu, Li-Xiong Dai, Min Liu and Qiong-Hua Jin\",\"doi\":\"10.1039/D5CE00455A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study explores crystal engineering strategies for rare earth heteroleptic complexes, focusing on ligand design, supramolecular control, and functional performance. Phosphine oxide ligands (TPPO) synergize steric/electronic effects to stabilize coordination geometries, while mixed-ligand systems (<em>e.g.</em>, TPPO/phen) enhance Eu<small><sup>3+</sup></small> luminescence (26.88% quantum yield). Polyoxometalates (POMs) template 3D architectures <em>via</em> hydrogen/charge interactions, enabling &gt;95% photocatalytic dye degradation and &gt;200 °C thermal stability. Rare earth-transition metal systems integrate 2D/3D topologies and multifunctionality (luminescence, gas adsorption) through electronic coupling. Additionally, carbon-based oxygen ligand systems (<em>e.g.</em>, β-diketonates) demonstrate the applicability of these core strategies—leveraging synergistic N-donor coordination and supramolecular interactions to achieve advanced functionalities like temperature-responsive luminescence. Future work will prioritize flexible ligand engineering and stimuli-responsive designs for applications in clean energy and quantum technologies, establishing a roadmap for advanced rare earth materials.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 32\",\"pages\":\" 5389-5397\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00455a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00455a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00455a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨稀土异亲配合物的晶体工程策略,重点关注配体设计、超分子控制和功能性能。氧化膦配体(TPPO)协同立体/电子效应稳定配位几何,而混合配体体系(如TPPO/phen)增强Eu3+发光(量子产率26.88%)。聚金属氧酸盐(pom)通过氢/电荷相互作用模板3D结构,实现95%的光催化染料降解和200°C的热稳定性。稀土过渡金属系统通过电子耦合集成了2D/3D拓扑结构和多功能(发光,气体吸附)。此外,碳基氧配体系统(例如β-二酮酸酯)证明了这些核心策略的适用性——利用协同n-供体配位和超分子相互作用来实现温度响应发光等高级功能。未来的工作将优先考虑柔性配体工程和刺激响应设计,用于清洁能源和量子技术的应用,建立先进稀土材料的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal engineering of rare earth heteroleptic complexes: phosphine oxide ligand control, POM-directed assembly, and performance metrics

Crystal engineering of rare earth heteroleptic complexes: phosphine oxide ligand control, POM-directed assembly, and performance metrics

This study explores crystal engineering strategies for rare earth heteroleptic complexes, focusing on ligand design, supramolecular control, and functional performance. Phosphine oxide ligands (TPPO) synergize steric/electronic effects to stabilize coordination geometries, while mixed-ligand systems (e.g., TPPO/phen) enhance Eu3+ luminescence (26.88% quantum yield). Polyoxometalates (POMs) template 3D architectures via hydrogen/charge interactions, enabling >95% photocatalytic dye degradation and >200 °C thermal stability. Rare earth-transition metal systems integrate 2D/3D topologies and multifunctionality (luminescence, gas adsorption) through electronic coupling. Additionally, carbon-based oxygen ligand systems (e.g., β-diketonates) demonstrate the applicability of these core strategies—leveraging synergistic N-donor coordination and supramolecular interactions to achieve advanced functionalities like temperature-responsive luminescence. Future work will prioritize flexible ligand engineering and stimuli-responsive designs for applications in clean energy and quantum technologies, establishing a roadmap for advanced rare earth materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信