ZnCeZrOX三元固溶体上CO2合成碳酸二苯酯:氧空位和路易斯酸位的协同催化

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Mengke Xing , Tianli Hui , Rui Zhang , Tao Zheng , Zhichang Liu , Haiyan Liu , Chunming Xu , Xianghai Meng
{"title":"ZnCeZrOX三元固溶体上CO2合成碳酸二苯酯:氧空位和路易斯酸位的协同催化","authors":"Mengke Xing ,&nbsp;Tianli Hui ,&nbsp;Rui Zhang ,&nbsp;Tao Zheng ,&nbsp;Zhichang Liu ,&nbsp;Haiyan Liu ,&nbsp;Chunming Xu ,&nbsp;Xianghai Meng","doi":"10.1039/d5cy00348b","DOIUrl":null,"url":null,"abstract":"<div><div>The direct synthesis of diphenyl carbonate (DPC) from CO<sub>2</sub> and phenol has attracted much attention as it can realize CO<sub>2</sub> utilization and can avoid phosgene usage in the traditional production process. Nevertheless, the achievement of high DPC yields is hindered by the difficult activation of CO<sub>2</sub>. Herein, a dual metal incorporated ZnCeZrO<sub><em>X</em></sub> catalyst was synthesized, and the synergistic catalysis mechanism between oxygen vacancies and Lewis acid sites was systematically demonstrated. Raman and EPR analyses revealed that the simultaneous introduction of Zn and Ce effectively promoted the formation of abundant oxygen vacancies, thereby enhancing the adsorption and activation of CO<sub>2</sub>. NH<sub>3</sub>-TPD and Py-IR characterizations demonstrated that dual doping of Zn and Ce modulated Lewis acidity, benefiting the adsorption of phenol and intermediates. Compared with ZnZrO<sub><em>X</em></sub> and CeZrO<sub><em>X</em></sub>, the ZnCeZrO<sub><em>X</em></sub> catalyst demonstrated superior catalytic performance, achieving a phenol conversion of 47.6% and a DPC selectivity of 82.5%. DFT and <em>in situ</em> FTIR analyses indicated that oxygen vacancies activated CO<sub>2</sub> to form b-CO<sub>3</sub><sup>2−</sup> species, while Lewis acid sites adsorbed phenol to facilitate the dissociation of the O<sub>phenol</sub>–H bond, synergistically generating DPC. This study demonstrates synergistic catalysis using oxygen vacancies and Lewis acid sites, opening a novel avenue for DPC synthesis.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 16","pages":"Pages 4872-4884"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diphenyl carbonate synthesis from CO2 over a ZnCeZrOX ternary solid solution: synergistic catalysis using oxygen vacancies and Lewis acid sites†\",\"authors\":\"Mengke Xing ,&nbsp;Tianli Hui ,&nbsp;Rui Zhang ,&nbsp;Tao Zheng ,&nbsp;Zhichang Liu ,&nbsp;Haiyan Liu ,&nbsp;Chunming Xu ,&nbsp;Xianghai Meng\",\"doi\":\"10.1039/d5cy00348b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The direct synthesis of diphenyl carbonate (DPC) from CO<sub>2</sub> and phenol has attracted much attention as it can realize CO<sub>2</sub> utilization and can avoid phosgene usage in the traditional production process. Nevertheless, the achievement of high DPC yields is hindered by the difficult activation of CO<sub>2</sub>. Herein, a dual metal incorporated ZnCeZrO<sub><em>X</em></sub> catalyst was synthesized, and the synergistic catalysis mechanism between oxygen vacancies and Lewis acid sites was systematically demonstrated. Raman and EPR analyses revealed that the simultaneous introduction of Zn and Ce effectively promoted the formation of abundant oxygen vacancies, thereby enhancing the adsorption and activation of CO<sub>2</sub>. NH<sub>3</sub>-TPD and Py-IR characterizations demonstrated that dual doping of Zn and Ce modulated Lewis acidity, benefiting the adsorption of phenol and intermediates. Compared with ZnZrO<sub><em>X</em></sub> and CeZrO<sub><em>X</em></sub>, the ZnCeZrO<sub><em>X</em></sub> catalyst demonstrated superior catalytic performance, achieving a phenol conversion of 47.6% and a DPC selectivity of 82.5%. DFT and <em>in situ</em> FTIR analyses indicated that oxygen vacancies activated CO<sub>2</sub> to form b-CO<sub>3</sub><sup>2−</sup> species, while Lewis acid sites adsorbed phenol to facilitate the dissociation of the O<sub>phenol</sub>–H bond, synergistically generating DPC. This study demonstrates synergistic catalysis using oxygen vacancies and Lewis acid sites, opening a novel avenue for DPC synthesis.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"15 16\",\"pages\":\"Pages 4872-4884\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475325003090\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325003090","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以CO2和苯酚为原料直接合成碳酸二苯酯(DPC),既能实现CO2的利用,又能避免传统生产工艺中光气的使用,受到了广泛的关注。然而,高DPC产率的实现受到CO2难以活化的阻碍。本文合成了一种双金属掺杂的ZnCeZrOX催化剂,并系统地论证了氧空位与Lewis酸位点之间的协同催化机理。Raman和EPR分析表明,同时引入Zn和Ce有效地促进了丰富氧空位的形成,从而增强了CO2的吸附和活化。NH3-TPD和Py-IR表征表明,Zn和Ce的双掺杂调节了Lewis酸度,有利于苯酚和中间体的吸附。与ZnZrOX和CeZrOX相比,ZnCeZrOX催化剂表现出更优异的催化性能,苯酚转化率为47.6%,DPC选择性为82.5%。DFT和原位FTIR分析表明,氧空位激活CO2形成b-CO32−,而Lewis酸位点吸附苯酚促进苯酚- h键的解离,协同生成DPC。本研究证实了氧空位和Lewis酸位点的协同催化作用,为合成DPC开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diphenyl carbonate synthesis from CO2 over a ZnCeZrOX ternary solid solution: synergistic catalysis using oxygen vacancies and Lewis acid sites†

Diphenyl carbonate synthesis from CO2 over a ZnCeZrOX ternary solid solution: synergistic catalysis using oxygen vacancies and Lewis acid sites†
The direct synthesis of diphenyl carbonate (DPC) from CO2 and phenol has attracted much attention as it can realize CO2 utilization and can avoid phosgene usage in the traditional production process. Nevertheless, the achievement of high DPC yields is hindered by the difficult activation of CO2. Herein, a dual metal incorporated ZnCeZrOX catalyst was synthesized, and the synergistic catalysis mechanism between oxygen vacancies and Lewis acid sites was systematically demonstrated. Raman and EPR analyses revealed that the simultaneous introduction of Zn and Ce effectively promoted the formation of abundant oxygen vacancies, thereby enhancing the adsorption and activation of CO2. NH3-TPD and Py-IR characterizations demonstrated that dual doping of Zn and Ce modulated Lewis acidity, benefiting the adsorption of phenol and intermediates. Compared with ZnZrOX and CeZrOX, the ZnCeZrOX catalyst demonstrated superior catalytic performance, achieving a phenol conversion of 47.6% and a DPC selectivity of 82.5%. DFT and in situ FTIR analyses indicated that oxygen vacancies activated CO2 to form b-CO32− species, while Lewis acid sites adsorbed phenol to facilitate the dissociation of the Ophenol–H bond, synergistically generating DPC. This study demonstrates synergistic catalysis using oxygen vacancies and Lewis acid sites, opening a novel avenue for DPC synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信