Rep \((C_2)\) -配合物的重阶poincarcars多项式和等变上同调

IF 0.5 4区 数学 Q2 MATHEMATICS
Eric Hogle
{"title":"Rep \\((C_2)\\) -配合物的重阶poincarcars多项式和等变上同调","authors":"Eric Hogle","doi":"10.1007/s40062-025-00375-8","DOIUrl":null,"url":null,"abstract":"<div><p>We are interested in computing the Bredon cohomology with coefficients in the constant Mackey functor <span>\\(\\underline{{\\mathbb {F}}_2}\\)</span> for equivariant <span>\\(\\text {Rep}(C_2)\\)</span> spaces, in particular for Grassmannian manifolds of the form <span>\\(\\operatorname {Gr}_k(V)\\)</span> where <i>V</i> is some real representation of <span>\\(C_2.\\)</span> It is possible to create multiple distinct <span>\\(\\text {Rep}(C_2)\\)</span> constructions of (and hence multiple filtration spectral sequences for) a given Grassmannian. For sufficiently small examples one may exhaustively compute all possible outcomes of each spectral sequence and determine if there exists a unique common answer. However, the complexity of such a computation quickly balloons in time and memory requirements. We introduce a statistic on <span>\\(\\mathbb {M}_2\\)</span>-modules valued in the polynomial ring <span>\\(\\mathbb Z[x,y]\\)</span> which makes cohomology computation of Rep<span>\\((C_2)\\)</span>-complexes more tractable, and we present some new results for Grassmannians.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 3","pages":"417 - 435"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bigraded Poincaré polynomials and the equivariant cohomology of Rep\\\\((C_2)\\\\)-complexes\",\"authors\":\"Eric Hogle\",\"doi\":\"10.1007/s40062-025-00375-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are interested in computing the Bredon cohomology with coefficients in the constant Mackey functor <span>\\\\(\\\\underline{{\\\\mathbb {F}}_2}\\\\)</span> for equivariant <span>\\\\(\\\\text {Rep}(C_2)\\\\)</span> spaces, in particular for Grassmannian manifolds of the form <span>\\\\(\\\\operatorname {Gr}_k(V)\\\\)</span> where <i>V</i> is some real representation of <span>\\\\(C_2.\\\\)</span> It is possible to create multiple distinct <span>\\\\(\\\\text {Rep}(C_2)\\\\)</span> constructions of (and hence multiple filtration spectral sequences for) a given Grassmannian. For sufficiently small examples one may exhaustively compute all possible outcomes of each spectral sequence and determine if there exists a unique common answer. However, the complexity of such a computation quickly balloons in time and memory requirements. We introduce a statistic on <span>\\\\(\\\\mathbb {M}_2\\\\)</span>-modules valued in the polynomial ring <span>\\\\(\\\\mathbb Z[x,y]\\\\)</span> which makes cohomology computation of Rep<span>\\\\((C_2)\\\\)</span>-complexes more tractable, and we present some new results for Grassmannians.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"20 3\",\"pages\":\"417 - 435\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-025-00375-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00375-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于等变\(\text {Rep}(C_2)\)空间,我们感兴趣的是计算常数Mackey函子\(\underline{{\mathbb {F}}_2}\)中系数的Bredon上同构,特别是对于形式为\(\operatorname {Gr}_k(V)\)的Grassmannian流形,其中V是\(C_2.\)的一些实际表示。有可能为给定的Grassmannian创建多个不同的\(\text {Rep}(C_2)\)结构(因此为多个过滤光谱序列)。对于足够小的例子,可以穷尽地计算每个谱序列的所有可能结果,并确定是否存在唯一的共同答案。然而,这种计算的复杂性在时间和内存需求方面会迅速膨胀。我们在多项式环\(\mathbb Z[x,y]\)中引入了\(\mathbb {M}_2\) -模的一个统计量,使Rep \((C_2)\) -配合物的上同调计算变得更加容易,并给出了一些关于Grassmannians的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bigraded Poincaré polynomials and the equivariant cohomology of Rep\((C_2)\)-complexes

Bigraded Poincaré polynomials and the equivariant cohomology of Rep\((C_2)\)-complexes

Bigraded Poincaré polynomials and the equivariant cohomology of Rep\((C_2)\)-complexes

We are interested in computing the Bredon cohomology with coefficients in the constant Mackey functor \(\underline{{\mathbb {F}}_2}\) for equivariant \(\text {Rep}(C_2)\) spaces, in particular for Grassmannian manifolds of the form \(\operatorname {Gr}_k(V)\) where V is some real representation of \(C_2.\) It is possible to create multiple distinct \(\text {Rep}(C_2)\) constructions of (and hence multiple filtration spectral sequences for) a given Grassmannian. For sufficiently small examples one may exhaustively compute all possible outcomes of each spectral sequence and determine if there exists a unique common answer. However, the complexity of such a computation quickly balloons in time and memory requirements. We introduce a statistic on \(\mathbb {M}_2\)-modules valued in the polynomial ring \(\mathbb Z[x,y]\) which makes cohomology computation of Rep\((C_2)\)-complexes more tractable, and we present some new results for Grassmannians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信