综合炼钢过程中膜分离技术的多任务深度学习同时预测钢纯度和碳捕集率

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-08-05 DOI:10.1016/j.array.2025.100485
Somboon Sukpancharoen , Pakon Sakdee , Natacha Phetyim , Rinlada Sirisangsawang , Chayut Sungsook
{"title":"综合炼钢过程中膜分离技术的多任务深度学习同时预测钢纯度和碳捕集率","authors":"Somboon Sukpancharoen ,&nbsp;Pakon Sakdee ,&nbsp;Natacha Phetyim ,&nbsp;Rinlada Sirisangsawang ,&nbsp;Chayut Sungsook","doi":"10.1016/j.array.2025.100485","DOIUrl":null,"url":null,"abstract":"<div><div>Steel production significantly contributes to global CO<sub>2</sub> emissions, demanding simultaneous optimization of product quality and environmental performance. Current prediction models address steel purity and carbon capture separately, missing opportunities for integrated process optimization. This work presents the first comparison of single-task learning (STL) versus multi-task learning (MTL) for simultaneous prediction of iron purity classification and carbon capture rates in membrane-integrated steelmaking processes. Deep neural networks (DNNs) were trained on 1,473 validated simulation data points with 30 input features covering raw materials, operating conditions, and membrane specifications. The MTL architecture employed shared hidden layers with task-specific output branches, utilizing ReLU activation functions and Adam optimization. STL achieved 97.62% accuracy with perfect recall for iron purity classification, while MTL demonstrated superior carbon capture prediction (R<sup>2</sup> = 0.9948 vs 0.9902), representing 30% improvement through shared process learning. Feature importance analysis revealed air flow rate as the dominant factor for iron purity, while membrane feed pressure controlled carbon capture performance. Results demonstrate strategic model selection for steel optimization: STL for critical quality control requiring zero false negatives; MTL for integrated processes leveraging parameter interactions. This framework enables simultaneous steel quality and environmental enhancement, advancing sustainable steelmaking and multi-objective optimization in process industries.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100485"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-task deep learning for simultaneous prediction of steel purity and carbon capture rate using membrane separation technology in integrated steelmaking processes\",\"authors\":\"Somboon Sukpancharoen ,&nbsp;Pakon Sakdee ,&nbsp;Natacha Phetyim ,&nbsp;Rinlada Sirisangsawang ,&nbsp;Chayut Sungsook\",\"doi\":\"10.1016/j.array.2025.100485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Steel production significantly contributes to global CO<sub>2</sub> emissions, demanding simultaneous optimization of product quality and environmental performance. Current prediction models address steel purity and carbon capture separately, missing opportunities for integrated process optimization. This work presents the first comparison of single-task learning (STL) versus multi-task learning (MTL) for simultaneous prediction of iron purity classification and carbon capture rates in membrane-integrated steelmaking processes. Deep neural networks (DNNs) were trained on 1,473 validated simulation data points with 30 input features covering raw materials, operating conditions, and membrane specifications. The MTL architecture employed shared hidden layers with task-specific output branches, utilizing ReLU activation functions and Adam optimization. STL achieved 97.62% accuracy with perfect recall for iron purity classification, while MTL demonstrated superior carbon capture prediction (R<sup>2</sup> = 0.9948 vs 0.9902), representing 30% improvement through shared process learning. Feature importance analysis revealed air flow rate as the dominant factor for iron purity, while membrane feed pressure controlled carbon capture performance. Results demonstrate strategic model selection for steel optimization: STL for critical quality control requiring zero false negatives; MTL for integrated processes leveraging parameter interactions. This framework enables simultaneous steel quality and environmental enhancement, advancing sustainable steelmaking and multi-objective optimization in process industries.</div></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"27 \",\"pages\":\"Article 100485\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005625001122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625001122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

钢铁生产对全球二氧化碳排放的贡献很大,要求同时优化产品质量和环境绩效。目前的预测模型分别解决了钢纯度和碳捕获,错过了集成过程优化的机会。这项工作首次比较了单任务学习(STL)和多任务学习(MTL)在膜集成炼钢过程中同时预测铁纯度分类和碳捕集率的效果。深度神经网络(dnn)在1473个经过验证的模拟数据点上进行训练,这些数据点有30个输入特征,包括原材料、操作条件和膜规格。MTL体系结构使用具有任务特定输出分支的共享隐藏层,利用ReLU激活函数和Adam优化。STL对铁纯度分类的准确率达到97.62%,召回率很好,而MTL对碳捕集的预测更优(R2 = 0.9948 vs 0.9902),通过共享过程学习提高了30%。特征重要性分析表明,空气流速是影响铁纯度的主要因素,而膜进料压力控制碳捕获性能。结果证明了钢材优化的策略模型选择:STL用于零假阴性的关键质量控制;MTL用于利用参数交互的集成过程。该框架能够同时提高钢铁质量和环境,推进可持续炼钢和过程工业的多目标优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-task deep learning for simultaneous prediction of steel purity and carbon capture rate using membrane separation technology in integrated steelmaking processes
Steel production significantly contributes to global CO2 emissions, demanding simultaneous optimization of product quality and environmental performance. Current prediction models address steel purity and carbon capture separately, missing opportunities for integrated process optimization. This work presents the first comparison of single-task learning (STL) versus multi-task learning (MTL) for simultaneous prediction of iron purity classification and carbon capture rates in membrane-integrated steelmaking processes. Deep neural networks (DNNs) were trained on 1,473 validated simulation data points with 30 input features covering raw materials, operating conditions, and membrane specifications. The MTL architecture employed shared hidden layers with task-specific output branches, utilizing ReLU activation functions and Adam optimization. STL achieved 97.62% accuracy with perfect recall for iron purity classification, while MTL demonstrated superior carbon capture prediction (R2 = 0.9948 vs 0.9902), representing 30% improvement through shared process learning. Feature importance analysis revealed air flow rate as the dominant factor for iron purity, while membrane feed pressure controlled carbon capture performance. Results demonstrate strategic model selection for steel optimization: STL for critical quality control requiring zero false negatives; MTL for integrated processes leveraging parameter interactions. This framework enables simultaneous steel quality and environmental enhancement, advancing sustainable steelmaking and multi-objective optimization in process industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信