伪一致Gödel逻辑中过滤器诱导的蕴涵关系

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Sabine Frittella , Daniil Kozhemiachenko
{"title":"伪一致Gödel逻辑中过滤器诱导的蕴涵关系","authors":"Sabine Frittella ,&nbsp;Daniil Kozhemiachenko","doi":"10.1016/j.fss.2025.109563","DOIUrl":null,"url":null,"abstract":"<div><div>We consider two expansions of Gödel logic <span><math><mi>G</mi></math></span> with two versions of paraconsistent negation. The first one is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> — the expansion of <span><math><mi>G</mi></math></span> with an <em>involuitive</em> negation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> defined via <span><math><mi>v</mi><mo>(</mo><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub><mi>ϕ</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>−</mo><mi>v</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>. The second one is <figure><img></figure> — an expansion with a so-called ‘strong negation’ ¬. This logic utilises <em>two independent</em> valuations on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> — <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (support of truth or positive support) and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (support of falsity or negative support) that are connected with ¬. Two valuations in <figure><img></figure> can be combined into one valuation <em>v</em> on <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span> — the twisted product of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> with itself — with two components <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The two logics are closely connected as <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> and ¬ allow for similar definitions of <em>co-implication</em> — <figure><img></figure> and <figure><img></figure> — but do not coincide since the set of values of <figure><img></figure> is not ordered linearly.</div><div>Our main goal is to study different entailment relations in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> and <figure><img></figure> that are induced by filters on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, respectively. In particular, we determine the exact number of such relations in both cases, establish whether any of them coincide with the entailment defined via the order on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, and obtain their hierarchy. We also construct reductions of filter-induced entailment relations to the ones defined via the order.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"520 ","pages":"Article 109563"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filter-induced entailment relations in paraconsistent Gödel logics\",\"authors\":\"Sabine Frittella ,&nbsp;Daniil Kozhemiachenko\",\"doi\":\"10.1016/j.fss.2025.109563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider two expansions of Gödel logic <span><math><mi>G</mi></math></span> with two versions of paraconsistent negation. The first one is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> — the expansion of <span><math><mi>G</mi></math></span> with an <em>involuitive</em> negation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> defined via <span><math><mi>v</mi><mo>(</mo><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub><mi>ϕ</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>−</mo><mi>v</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>. The second one is <figure><img></figure> — an expansion with a so-called ‘strong negation’ ¬. This logic utilises <em>two independent</em> valuations on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> — <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (support of truth or positive support) and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (support of falsity or negative support) that are connected with ¬. Two valuations in <figure><img></figure> can be combined into one valuation <em>v</em> on <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span> — the twisted product of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> with itself — with two components <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The two logics are closely connected as <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> and ¬ allow for similar definitions of <em>co-implication</em> — <figure><img></figure> and <figure><img></figure> — but do not coincide since the set of values of <figure><img></figure> is not ordered linearly.</div><div>Our main goal is to study different entailment relations in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> and <figure><img></figure> that are induced by filters on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, respectively. In particular, we determine the exact number of such relations in both cases, establish whether any of them coincide with the entailment defined via the order on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, and obtain their hierarchy. We also construct reductions of filter-induced entailment relations to the ones defined via the order.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"520 \",\"pages\":\"Article 109563\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011425003021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425003021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑Gödel逻辑G的两个展开式,它们具有两个副相容否定的版本。第一个是Ginv -通过v(~ iϕ)=1 - v(ϕ)定义的对合否定的G的展开式。第二种是——一种带有所谓“强否定”的扩张。该逻辑利用了[0,1]上的两个独立估值——v1(支持真或正支持)和v2(支持假或负支持),它们与¬相关。在[0,1]上的两个赋值可以组合成一个赋值v -[0,1]与自身的扭曲积-具有两个分量v1和v2。这两个逻辑紧密相连,因为-i和-允许共同隐含和-的相似定义,但不一致,因为的值的集合不是线性有序的。我们的主要目标是研究Ginv中不同的蕴涵关系,它们分别由[0,1]和[0,1]上的过滤器诱导。特别是,我们确定了这两种情况下这种关系的确切数量,确定它们中的任何一个是否与通过[0,1]和[0,1]上的顺序定义的蕴涵相吻合,并获得它们的层次结构。我们还构造了过滤器诱导的蕴涵关系到通过顺序定义的蕴涵关系的约简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filter-induced entailment relations in paraconsistent Gödel logics
We consider two expansions of Gödel logic G with two versions of paraconsistent negation. The first one is Ginv — the expansion of G with an involuitive negation i defined via v(iϕ)=1v(ϕ). The second one is
— an expansion with a so-called ‘strong negation’ ¬. This logic utilises two independent valuations on [0,1]v1 (support of truth or positive support) and v2 (support of falsity or negative support) that are connected with ¬. Two valuations in
can be combined into one valuation v on [0,1] — the twisted product of [0,1] with itself — with two components v1 and v2. The two logics are closely connected as i and ¬ allow for similar definitions of co-implication
and
— but do not coincide since the set of values of
is not ordered linearly.
Our main goal is to study different entailment relations in Ginv and
that are induced by filters on [0,1] and [0,1], respectively. In particular, we determine the exact number of such relations in both cases, establish whether any of them coincide with the entailment defined via the order on [0,1] and [0,1], and obtain their hierarchy. We also construct reductions of filter-induced entailment relations to the ones defined via the order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信