{"title":"伪一致Gödel逻辑中过滤器诱导的蕴涵关系","authors":"Sabine Frittella , Daniil Kozhemiachenko","doi":"10.1016/j.fss.2025.109563","DOIUrl":null,"url":null,"abstract":"<div><div>We consider two expansions of Gödel logic <span><math><mi>G</mi></math></span> with two versions of paraconsistent negation. The first one is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> — the expansion of <span><math><mi>G</mi></math></span> with an <em>involuitive</em> negation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> defined via <span><math><mi>v</mi><mo>(</mo><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub><mi>ϕ</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>−</mo><mi>v</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>. The second one is <figure><img></figure> — an expansion with a so-called ‘strong negation’ ¬. This logic utilises <em>two independent</em> valuations on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> — <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (support of truth or positive support) and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (support of falsity or negative support) that are connected with ¬. Two valuations in <figure><img></figure> can be combined into one valuation <em>v</em> on <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span> — the twisted product of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> with itself — with two components <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The two logics are closely connected as <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> and ¬ allow for similar definitions of <em>co-implication</em> — <figure><img></figure> and <figure><img></figure> — but do not coincide since the set of values of <figure><img></figure> is not ordered linearly.</div><div>Our main goal is to study different entailment relations in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> and <figure><img></figure> that are induced by filters on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, respectively. In particular, we determine the exact number of such relations in both cases, establish whether any of them coincide with the entailment defined via the order on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, and obtain their hierarchy. We also construct reductions of filter-induced entailment relations to the ones defined via the order.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"520 ","pages":"Article 109563"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filter-induced entailment relations in paraconsistent Gödel logics\",\"authors\":\"Sabine Frittella , Daniil Kozhemiachenko\",\"doi\":\"10.1016/j.fss.2025.109563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider two expansions of Gödel logic <span><math><mi>G</mi></math></span> with two versions of paraconsistent negation. The first one is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> — the expansion of <span><math><mi>G</mi></math></span> with an <em>involuitive</em> negation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> defined via <span><math><mi>v</mi><mo>(</mo><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub><mi>ϕ</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>−</mo><mi>v</mi><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>. The second one is <figure><img></figure> — an expansion with a so-called ‘strong negation’ ¬. This logic utilises <em>two independent</em> valuations on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> — <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> (support of truth or positive support) and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (support of falsity or negative support) that are connected with ¬. Two valuations in <figure><img></figure> can be combined into one valuation <em>v</em> on <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span> — the twisted product of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> with itself — with two components <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The two logics are closely connected as <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> and ¬ allow for similar definitions of <em>co-implication</em> — <figure><img></figure> and <figure><img></figure> — but do not coincide since the set of values of <figure><img></figure> is not ordered linearly.</div><div>Our main goal is to study different entailment relations in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>inv</mi></mrow></msub></math></span> and <figure><img></figure> that are induced by filters on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, respectively. In particular, we determine the exact number of such relations in both cases, establish whether any of them coincide with the entailment defined via the order on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>⋈</mo></mrow></msup></math></span>, and obtain their hierarchy. We also construct reductions of filter-induced entailment relations to the ones defined via the order.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"520 \",\"pages\":\"Article 109563\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011425003021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425003021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Filter-induced entailment relations in paraconsistent Gödel logics
We consider two expansions of Gödel logic with two versions of paraconsistent negation. The first one is — the expansion of with an involuitive negation defined via . The second one is — an expansion with a so-called ‘strong negation’ ¬. This logic utilises two independent valuations on — (support of truth or positive support) and (support of falsity or negative support) that are connected with ¬. Two valuations in can be combined into one valuation v on — the twisted product of with itself — with two components and . The two logics are closely connected as and ¬ allow for similar definitions of co-implication — and — but do not coincide since the set of values of is not ordered linearly.
Our main goal is to study different entailment relations in and that are induced by filters on and , respectively. In particular, we determine the exact number of such relations in both cases, establish whether any of them coincide with the entailment defined via the order on and , and obtain their hierarchy. We also construct reductions of filter-induced entailment relations to the ones defined via the order.
期刊介绍:
Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.
In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.