铝颗粒燃烧的小火焰模型

IF 6.2 2区 工程技术 Q2 ENERGY & FUELS
Jiarui Zhang, Liya Huang, Likun Ma, Zhixun Xia
{"title":"铝颗粒燃烧的小火焰模型","authors":"Jiarui Zhang,&nbsp;Liya Huang,&nbsp;Likun Ma,&nbsp;Zhixun Xia","doi":"10.1016/j.combustflame.2025.114389","DOIUrl":null,"url":null,"abstract":"<div><div>To facilitate comprehensive numerical studies on metal fuel combustion within large-scale burners, a novel flamelet model is formulated for aluminum (Al) particle combustion using Flamelet Generated Manifold (FGM). The new FGM model for Al particle combustion is referred as Al-FGM model. The model introduces an oxidizer depletion parameter <span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>O</mi></mrow></msub></math></span> that quantitatively captures oxygen consumption mechanisms through both heterogeneous surface reactions and alumina deposition processes. This key advancement complements three fundamental combustion descriptors: fuel-oriented mixture fraction <span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>Al</mi></mrow></msub></math></span>, reaction progress variable <span><math><msub><mrow><mover><mrow><mi>Y</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>, and normalized enthalpy deficit <span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span>. The resulting four-variable manifold (<span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>Al</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>Y</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>O</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span>) establishes a thermochemical state space for efficient flamelet tabulation. The flamelet library is constructed by solving a series of one-dimensional (1D) gaseous counterflow flames. To accurately represent the significant gas-phase enthalpy changes due to intense interphase and radiative heat transfer within Al particle cloud combustion, the temperature boundary conditions of the 1D counterflow flames and the proportion of energy released by chemical reactions in the gas-phase energy equation are synergistically adjusted during the solution process. The proposed Al-FGM model undergoes validation using a dust counterflow flame setup. Using solutions derived from detailed chemistry as reference data, the Al-FGM model is validated across various dust concentrations through both <em>a priori</em> and <em>a posteriori</em> analysis. In the <em>a priori</em> studies, the proposed Al-FGM model is first validated on a pure gas Al counterflow flame setup, demonstrating perfect agreement. At a low Al particle concentrations (<span><math><mi>ϕ</mi></math></span> = 300 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>), Al-FGM results match perfectly with reference data, as evidenced by both <em>a priori</em> and <em>a posteriori</em> analysis. As dust concentration increases (<span><math><mi>ϕ</mi></math></span> = 400 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>), minor discrepancies emerge in mid-flame regions, where premixed combustion dominates. At higher concentrations (<span><math><mi>ϕ</mi></math></span> = 500 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>), these discrepancies amplify in the midstream and downstream regions of the counterflow flames, while the upstream region remains highly accurate. Despite these deviations, the maximum error in average temperature predictions at <span><math><mi>ϕ</mi></math></span> = 500 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> remains a mere 95 K, corresponding to a relative error of 2.7% in the <em>a posteriori</em> analysis. Computational cost analyses indicate that the tabulated chemistry framework achieves a 4-5 fold increase in computational speedup compared to detailed chemistry simulation for the studied 2D setup.</div><div><strong>Novelty and Significance Statement</strong></div><div>In the present study, a novel four-control-variables flamelet model is proposed for aluminum particle combustion for the very first time. The validity of this proposed model is robustly established through comparisons with solutions derived from detailed chemical kinetics. This study represents a significant advancement in flamelet modeling for metal fuel combustion, providing a promising framework for future simulation-based investigations in this field.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"280 ","pages":"Article 114389"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flamelet modeling of aluminum particle combustion\",\"authors\":\"Jiarui Zhang,&nbsp;Liya Huang,&nbsp;Likun Ma,&nbsp;Zhixun Xia\",\"doi\":\"10.1016/j.combustflame.2025.114389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To facilitate comprehensive numerical studies on metal fuel combustion within large-scale burners, a novel flamelet model is formulated for aluminum (Al) particle combustion using Flamelet Generated Manifold (FGM). The new FGM model for Al particle combustion is referred as Al-FGM model. The model introduces an oxidizer depletion parameter <span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>O</mi></mrow></msub></math></span> that quantitatively captures oxygen consumption mechanisms through both heterogeneous surface reactions and alumina deposition processes. This key advancement complements three fundamental combustion descriptors: fuel-oriented mixture fraction <span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>Al</mi></mrow></msub></math></span>, reaction progress variable <span><math><msub><mrow><mover><mrow><mi>Y</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>, and normalized enthalpy deficit <span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span>. The resulting four-variable manifold (<span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>Al</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>Y</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>c</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>Z</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>O</mi></mrow></msub></math></span>, <span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span>) establishes a thermochemical state space for efficient flamelet tabulation. The flamelet library is constructed by solving a series of one-dimensional (1D) gaseous counterflow flames. To accurately represent the significant gas-phase enthalpy changes due to intense interphase and radiative heat transfer within Al particle cloud combustion, the temperature boundary conditions of the 1D counterflow flames and the proportion of energy released by chemical reactions in the gas-phase energy equation are synergistically adjusted during the solution process. The proposed Al-FGM model undergoes validation using a dust counterflow flame setup. Using solutions derived from detailed chemistry as reference data, the Al-FGM model is validated across various dust concentrations through both <em>a priori</em> and <em>a posteriori</em> analysis. In the <em>a priori</em> studies, the proposed Al-FGM model is first validated on a pure gas Al counterflow flame setup, demonstrating perfect agreement. At a low Al particle concentrations (<span><math><mi>ϕ</mi></math></span> = 300 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>), Al-FGM results match perfectly with reference data, as evidenced by both <em>a priori</em> and <em>a posteriori</em> analysis. As dust concentration increases (<span><math><mi>ϕ</mi></math></span> = 400 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>), minor discrepancies emerge in mid-flame regions, where premixed combustion dominates. At higher concentrations (<span><math><mi>ϕ</mi></math></span> = 500 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>), these discrepancies amplify in the midstream and downstream regions of the counterflow flames, while the upstream region remains highly accurate. Despite these deviations, the maximum error in average temperature predictions at <span><math><mi>ϕ</mi></math></span> = 500 <span><math><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> remains a mere 95 K, corresponding to a relative error of 2.7% in the <em>a posteriori</em> analysis. Computational cost analyses indicate that the tabulated chemistry framework achieves a 4-5 fold increase in computational speedup compared to detailed chemistry simulation for the studied 2D setup.</div><div><strong>Novelty and Significance Statement</strong></div><div>In the present study, a novel four-control-variables flamelet model is proposed for aluminum particle combustion for the very first time. The validity of this proposed model is robustly established through comparisons with solutions derived from detailed chemical kinetics. This study represents a significant advancement in flamelet modeling for metal fuel combustion, providing a promising framework for future simulation-based investigations in this field.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"280 \",\"pages\":\"Article 114389\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218025004262\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025004262","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了对大型燃烧器内金属燃料燃烧进行全面的数值研究,采用火焰生成歧管(FGM)建立了铝颗粒燃烧的火焰模型。新的Al颗粒燃烧FGM模型称为Al-FGM模型。该模型引入了氧化剂耗尽参数Z ø O,该参数通过非均相表面反应和氧化铝沉积过程定量捕获氧气消耗机制。这一关键的进步补充了三个基本的燃烧描述符:燃料导向混合物分数Z´Al,反应过程变量Y´c和归一化焓差h´t。由此产生的四变量流形(Z´Al, Y´c, Z´O, h´t)为有效的火焰制表建立了热化学状态空间。火焰库是通过求解一系列一维(1D)气体逆流火焰来构建的。为了准确表征Al颗粒云燃烧过程中由于强烈的相间换热和辐射换热引起的显著气相焓变,在溶液过程中对一维逆流火焰的温度边界条件和气相能量方程中化学反应释放的能量所占比例进行了协同调整。提出的Al-FGM模型使用粉尘逆流火焰装置进行验证。利用从详细化学中得到的溶液作为参考数据,通过先验和后验分析验证了Al-FGM模型在不同粉尘浓度下的有效性。在先验研究中,提出的Al- fgm模型首先在纯气体Al逆流火焰装置上进行了验证,证明了完美的一致性。在低Al颗粒浓度(φ = 300 g/m3)下,Al- fgm结果与参考数据完全匹配,先验和后验分析都证明了这一点。随着粉尘浓度的增加(φ = 400 g/m3),在火焰中部区域出现轻微的差异,其中预混燃烧占主导地位。在较高的浓度下(φ = 500 g/m3),这些差异在逆流火焰的中游和下游区域放大,而上游区域仍然高度准确。尽管存在这些偏差,但在φ = 500 g/m3时平均温度预测的最大误差仍然仅为95 K,对应于后验分析中的相对误差2.7%。计算成本分析表明,与所研究的2D设置的详细化学模拟相比,制表化学框架的计算速度提高了4-5倍。在本研究中,首次提出了一种新的四控制变量的铝颗粒燃烧小火焰模型。通过与从详细化学动力学中得到的解的比较,建立了该模型的有效性。这项研究代表了金属燃料燃烧小火焰建模的重大进展,为该领域未来基于模拟的研究提供了一个有希望的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flamelet modeling of aluminum particle combustion
To facilitate comprehensive numerical studies on metal fuel combustion within large-scale burners, a novel flamelet model is formulated for aluminum (Al) particle combustion using Flamelet Generated Manifold (FGM). The new FGM model for Al particle combustion is referred as Al-FGM model. The model introduces an oxidizer depletion parameter ZˆO that quantitatively captures oxygen consumption mechanisms through both heterogeneous surface reactions and alumina deposition processes. This key advancement complements three fundamental combustion descriptors: fuel-oriented mixture fraction ZˆAl, reaction progress variable Yˆc, and normalized enthalpy deficit hˆt. The resulting four-variable manifold (ZˆAl, Yˆc, ZˆO, hˆt) establishes a thermochemical state space for efficient flamelet tabulation. The flamelet library is constructed by solving a series of one-dimensional (1D) gaseous counterflow flames. To accurately represent the significant gas-phase enthalpy changes due to intense interphase and radiative heat transfer within Al particle cloud combustion, the temperature boundary conditions of the 1D counterflow flames and the proportion of energy released by chemical reactions in the gas-phase energy equation are synergistically adjusted during the solution process. The proposed Al-FGM model undergoes validation using a dust counterflow flame setup. Using solutions derived from detailed chemistry as reference data, the Al-FGM model is validated across various dust concentrations through both a priori and a posteriori analysis. In the a priori studies, the proposed Al-FGM model is first validated on a pure gas Al counterflow flame setup, demonstrating perfect agreement. At a low Al particle concentrations (ϕ = 300 g/m3), Al-FGM results match perfectly with reference data, as evidenced by both a priori and a posteriori analysis. As dust concentration increases (ϕ = 400 g/m3), minor discrepancies emerge in mid-flame regions, where premixed combustion dominates. At higher concentrations (ϕ = 500 g/m3), these discrepancies amplify in the midstream and downstream regions of the counterflow flames, while the upstream region remains highly accurate. Despite these deviations, the maximum error in average temperature predictions at ϕ = 500 g/m3 remains a mere 95 K, corresponding to a relative error of 2.7% in the a posteriori analysis. Computational cost analyses indicate that the tabulated chemistry framework achieves a 4-5 fold increase in computational speedup compared to detailed chemistry simulation for the studied 2D setup.
Novelty and Significance Statement
In the present study, a novel four-control-variables flamelet model is proposed for aluminum particle combustion for the very first time. The validity of this proposed model is robustly established through comparisons with solutions derived from detailed chemical kinetics. This study represents a significant advancement in flamelet modeling for metal fuel combustion, providing a promising framework for future simulation-based investigations in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信