Shani Doron , Nardy Lampl , Alon Savidor , Amir Pri-Or , Corine Katina , Francisco Javier Cejudo , Yishai Levin , Shilo Rosenwasser
{"title":"在光合诱导过程中,由2-cys过氧化物还氧蛋白介导的两个相反的氧化还原信号形成氧化还原蛋白质组","authors":"Shani Doron , Nardy Lampl , Alon Savidor , Amir Pri-Or , Corine Katina , Francisco Javier Cejudo , Yishai Levin , Shilo Rosenwasser","doi":"10.1016/j.redox.2025.103810","DOIUrl":null,"url":null,"abstract":"<div><div>Photosynthetic induction, characterized by the lag in CO<sub>2</sub> assimilation rates during transition from darkness to light, has traditionally been attributed to Rubisco activase activity and stomatal opening. Yet, the faster induction of photosynthesis in the 2-Cys peroxiredoxins (Prxs) mutant (<em>2cpab</em>) suggested a role for oxidative signals in regulating photosynthetic rates, although the underlying molecular mechanism remains unclear. SPEAR, a redox proteomics approach, was used to systematically map redox changes occurring during photosynthesis induction and to unravel the role of 2-Cys Prxs in shaping these redox alterations. No significant difference was observed in protein expression levels between WT and <em>2cpab</em> plants, suggesting that protein abundance does not account for the <em>2cpab</em> phenotype. During the transition from dark to low light, 82 and 54 cysteine-containing peptides were reduced or oxidized, respectively, in WT plants. Most redox-regulated cysteines in photosynthetic proteins were found oxidized in the dark and became reduced in response to light. A reverse pattern was observed among redox-regulated cysteines in proteins involved in starch degradation and chloroplast glycolysis, which shifted from a reduced to an oxidized state in response to light. These findings demonstrate the initiation of two opposing redox responses, affecting distinct sets of metabolic proteins during the induction phase. Remarkably, a significantly lower number of cysteines were reduced or oxidized in <em>2cpab</em> plants, highlighting the crucial role 2-Cys Prxs play in shaping both signals. Taken together, rotational shifts between metabolic pathways during the photosynthesis induction phase are regulated by two opposing redox signals mediated by 2-Cys Prx activity.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"86 ","pages":"Article 103810"},"PeriodicalIF":11.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two opposing redox signals mediated by 2-cys peroxiredoxin shape the redox proteome during photosynthetic induction\",\"authors\":\"Shani Doron , Nardy Lampl , Alon Savidor , Amir Pri-Or , Corine Katina , Francisco Javier Cejudo , Yishai Levin , Shilo Rosenwasser\",\"doi\":\"10.1016/j.redox.2025.103810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photosynthetic induction, characterized by the lag in CO<sub>2</sub> assimilation rates during transition from darkness to light, has traditionally been attributed to Rubisco activase activity and stomatal opening. Yet, the faster induction of photosynthesis in the 2-Cys peroxiredoxins (Prxs) mutant (<em>2cpab</em>) suggested a role for oxidative signals in regulating photosynthetic rates, although the underlying molecular mechanism remains unclear. SPEAR, a redox proteomics approach, was used to systematically map redox changes occurring during photosynthesis induction and to unravel the role of 2-Cys Prxs in shaping these redox alterations. No significant difference was observed in protein expression levels between WT and <em>2cpab</em> plants, suggesting that protein abundance does not account for the <em>2cpab</em> phenotype. During the transition from dark to low light, 82 and 54 cysteine-containing peptides were reduced or oxidized, respectively, in WT plants. Most redox-regulated cysteines in photosynthetic proteins were found oxidized in the dark and became reduced in response to light. A reverse pattern was observed among redox-regulated cysteines in proteins involved in starch degradation and chloroplast glycolysis, which shifted from a reduced to an oxidized state in response to light. These findings demonstrate the initiation of two opposing redox responses, affecting distinct sets of metabolic proteins during the induction phase. Remarkably, a significantly lower number of cysteines were reduced or oxidized in <em>2cpab</em> plants, highlighting the crucial role 2-Cys Prxs play in shaping both signals. Taken together, rotational shifts between metabolic pathways during the photosynthesis induction phase are regulated by two opposing redox signals mediated by 2-Cys Prx activity.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"86 \",\"pages\":\"Article 103810\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231725003234\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725003234","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Two opposing redox signals mediated by 2-cys peroxiredoxin shape the redox proteome during photosynthetic induction
Photosynthetic induction, characterized by the lag in CO2 assimilation rates during transition from darkness to light, has traditionally been attributed to Rubisco activase activity and stomatal opening. Yet, the faster induction of photosynthesis in the 2-Cys peroxiredoxins (Prxs) mutant (2cpab) suggested a role for oxidative signals in regulating photosynthetic rates, although the underlying molecular mechanism remains unclear. SPEAR, a redox proteomics approach, was used to systematically map redox changes occurring during photosynthesis induction and to unravel the role of 2-Cys Prxs in shaping these redox alterations. No significant difference was observed in protein expression levels between WT and 2cpab plants, suggesting that protein abundance does not account for the 2cpab phenotype. During the transition from dark to low light, 82 and 54 cysteine-containing peptides were reduced or oxidized, respectively, in WT plants. Most redox-regulated cysteines in photosynthetic proteins were found oxidized in the dark and became reduced in response to light. A reverse pattern was observed among redox-regulated cysteines in proteins involved in starch degradation and chloroplast glycolysis, which shifted from a reduced to an oxidized state in response to light. These findings demonstrate the initiation of two opposing redox responses, affecting distinct sets of metabolic proteins during the induction phase. Remarkably, a significantly lower number of cysteines were reduced or oxidized in 2cpab plants, highlighting the crucial role 2-Cys Prxs play in shaping both signals. Taken together, rotational shifts between metabolic pathways during the photosynthesis induction phase are regulated by two opposing redox signals mediated by 2-Cys Prx activity.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.