NKAB:一种基于黑洞算法的k-匿名优化方法

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lynda Kacha
{"title":"NKAB:一种基于黑洞算法的k-匿名优化方法","authors":"Lynda Kacha","doi":"10.1016/j.cose.2025.104612","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the NP-hard problem of optimal k-anonymization. We propose NKAB, a novel optimization algorithm that significantly enhances the effectiveness of our earlier K-Anonymity Black Hole Algorithm (KAB). Unlike the original algorithm, NKAB introduces a preprocessing phase based on the concept of <em>Natural Equivalence Classes</em>, which filters and groups records with identical quasi-identifiers already present in the original dataset. This step significantly reduces search space and improves the computational efficiency of KAB. Experimental results obtained on the Adult dataset, a standard benchmark for the evaluation of anonymization algorithms, show a reduction in the search space, up to <strong>53.5%</strong> for the privacy parameter <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>, leading to an average computation time reduction of <strong>78.8%</strong>, while maintaining high data utility with lower information loss (ranging from <strong>0.88%</strong> to <strong>10.72%</strong>).</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"157 ","pages":"Article 104612"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NKAB: An optimization approach for k-anonymity based on Black Hole Algorithm\",\"authors\":\"Lynda Kacha\",\"doi\":\"10.1016/j.cose.2025.104612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the NP-hard problem of optimal k-anonymization. We propose NKAB, a novel optimization algorithm that significantly enhances the effectiveness of our earlier K-Anonymity Black Hole Algorithm (KAB). Unlike the original algorithm, NKAB introduces a preprocessing phase based on the concept of <em>Natural Equivalence Classes</em>, which filters and groups records with identical quasi-identifiers already present in the original dataset. This step significantly reduces search space and improves the computational efficiency of KAB. Experimental results obtained on the Adult dataset, a standard benchmark for the evaluation of anonymization algorithms, show a reduction in the search space, up to <strong>53.5%</strong> for the privacy parameter <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>, leading to an average computation time reduction of <strong>78.8%</strong>, while maintaining high data utility with lower information loss (ranging from <strong>0.88%</strong> to <strong>10.72%</strong>).</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"157 \",\"pages\":\"Article 104612\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404825003013\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825003013","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了最优k-匿名化的np困难问题。我们提出了一种新的优化算法NKAB,它显著提高了我们之前的k -匿名黑洞算法(KAB)的有效性。与原始算法不同的是,NKAB引入了一个基于自然等价类概念的预处理阶段,该阶段对原始数据集中已经存在的具有相同准标识符的记录进行过滤和分组。这一步骤大大减少了搜索空间,提高了KAB的计算效率。在评估匿名化算法的标准基准Adult数据集上获得的实验结果显示,对于隐私参数k=2,搜索空间减少了53.5%,导致平均计算时间减少了78.8%,同时保持了较高的数据效用和较低的信息丢失(范围从0.88%到10.72%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NKAB: An optimization approach for k-anonymity based on Black Hole Algorithm
This paper addresses the NP-hard problem of optimal k-anonymization. We propose NKAB, a novel optimization algorithm that significantly enhances the effectiveness of our earlier K-Anonymity Black Hole Algorithm (KAB). Unlike the original algorithm, NKAB introduces a preprocessing phase based on the concept of Natural Equivalence Classes, which filters and groups records with identical quasi-identifiers already present in the original dataset. This step significantly reduces search space and improves the computational efficiency of KAB. Experimental results obtained on the Adult dataset, a standard benchmark for the evaluation of anonymization algorithms, show a reduction in the search space, up to 53.5% for the privacy parameter k=2, leading to an average computation time reduction of 78.8%, while maintaining high data utility with lower information loss (ranging from 0.88% to 10.72%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信