基于语境学习的llm姿态分类实证研究

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lida Shi , Fausto Giunchiglia , Ran Luo , Daqian Shi , Rui Song , Xiaolei Diao , Hao Xu
{"title":"基于语境学习的llm姿态分类实证研究","authors":"Lida Shi ,&nbsp;Fausto Giunchiglia ,&nbsp;Ran Luo ,&nbsp;Daqian Shi ,&nbsp;Rui Song ,&nbsp;Xiaolei Diao ,&nbsp;Hao Xu","doi":"10.1016/j.ipm.2025.104322","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of large language models (LLMs) creates new research opportunities in stance classification. However, existing studies often lack a systematic evaluation and empirical analysis of the performance of mainstream large models. In this paper, we systematically evaluate the performance of 5 SOTA large language models, including LLaMA, DeepSeek, Qwen, GPT, and Gemini, on stance classification using 13 benchmark datasets. We explore the effectiveness of two strategies — random selection and semantic similarity selection — within the framework of in-context learning. By comparing these approaches through cross-domain and in-domain experiments, we reveal how they impact model performance and provide insights for future optimization. Overall, this study clarifies the influence of different models and sampling strategies on stance classification performance and suggests directions for further research. Our code is available at: <span><span>https://github.com/shilida/In-context4Stance</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104322"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An empirical study of LLMs via in-context learning for stance classification\",\"authors\":\"Lida Shi ,&nbsp;Fausto Giunchiglia ,&nbsp;Ran Luo ,&nbsp;Daqian Shi ,&nbsp;Rui Song ,&nbsp;Xiaolei Diao ,&nbsp;Hao Xu\",\"doi\":\"10.1016/j.ipm.2025.104322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid advancement of large language models (LLMs) creates new research opportunities in stance classification. However, existing studies often lack a systematic evaluation and empirical analysis of the performance of mainstream large models. In this paper, we systematically evaluate the performance of 5 SOTA large language models, including LLaMA, DeepSeek, Qwen, GPT, and Gemini, on stance classification using 13 benchmark datasets. We explore the effectiveness of two strategies — random selection and semantic similarity selection — within the framework of in-context learning. By comparing these approaches through cross-domain and in-domain experiments, we reveal how they impact model performance and provide insights for future optimization. Overall, this study clarifies the influence of different models and sampling strategies on stance classification performance and suggests directions for further research. Our code is available at: <span><span>https://github.com/shilida/In-context4Stance</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 1\",\"pages\":\"Article 104322\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325002638\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002638","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型的快速发展为姿态分类提供了新的研究机会。然而,现有研究往往缺乏对主流大型模型性能的系统评价和实证分析。在本文中,我们使用13个基准数据集系统地评估了包括LLaMA、DeepSeek、Qwen、GPT和Gemini在内的5种SOTA大型语言模型在姿态分类上的性能。本文探讨了语境学习中随机选择和语义相似选择两种策略的有效性。通过跨域和域内实验比较这些方法,我们揭示了它们如何影响模型性能,并为未来的优化提供了见解。总体而言,本研究阐明了不同模型和采样策略对姿态分类性能的影响,并提出了进一步研究的方向。我们的代码可在:https://github.com/shilida/In-context4Stance。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical study of LLMs via in-context learning for stance classification
The rapid advancement of large language models (LLMs) creates new research opportunities in stance classification. However, existing studies often lack a systematic evaluation and empirical analysis of the performance of mainstream large models. In this paper, we systematically evaluate the performance of 5 SOTA large language models, including LLaMA, DeepSeek, Qwen, GPT, and Gemini, on stance classification using 13 benchmark datasets. We explore the effectiveness of two strategies — random selection and semantic similarity selection — within the framework of in-context learning. By comparing these approaches through cross-domain and in-domain experiments, we reveal how they impact model performance and provide insights for future optimization. Overall, this study clarifies the influence of different models and sampling strategies on stance classification performance and suggests directions for further research. Our code is available at: https://github.com/shilida/In-context4Stance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信