氮叠烯衍生物薄膜在TiO2(110)上的生长:形貌和电子学

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
W. Bełza, K. Szajna, K. Cieślik, M. Kratzer, A. Matković, M. Krawiec, O. Siri, C. Teichert and F. Krok*, 
{"title":"氮叠烯衍生物薄膜在TiO2(110)上的生长:形貌和电子学","authors":"W. Bełza,&nbsp;K. Szajna,&nbsp;K. Cieślik,&nbsp;M. Kratzer,&nbsp;A. Matković,&nbsp;M. Krawiec,&nbsp;O. Siri,&nbsp;C. Teichert and F. Krok*,&nbsp;","doi":"10.1021/acs.jpcc.5c01435","DOIUrl":null,"url":null,"abstract":"<p >This study delves into the properties of thin films composed of dihydrotetraazapentacene (DHTAP) molecules, primarily exploring their growth and morphology of resulting structures on titanium dioxide (TiO<sub>2</sub>). These molecules are particularly appealing due to their inherent permanent dipole. Employing scanning probe microscopy (SPM) and scanning electron microscopy (SEM) allows for in-depth study of the growth mechanisms. Thermal desorption spectroscopy (TDS) experiments provided deeper insights into the energetics of DHTAP desorption. We have investigated diverse deposition parameters, substrate morphologies, and coverages, revealing intriguing insights into the molecular configurations and their interactions with the substrate. To confirm our experimental findings, we compared the obtained results with density functional theory (DFT) calculations and correlated them also with the growth behavior of pentacene molecules. DHTAP forms distinct structures on TiO<sub>2</sub>(110) surfaces, ranging from small clusters to elongated crystalline needles. A pivotal observation is temperature-dependent growth, where a critical temperature threshold dictates the formation of stable structures. STM images unveiled interesting molecular orientations, originating from the complex interaction between DHTAP molecules and the TiO<sub>2</sub>(110) substrate. As coverage increases, DHTAP molecules self-assemble into a wetting layer, displaying unique configurations influenced by the substrate’s anisotropy. TDS results confirm the weak molecule–substrate interaction. Comparisons with pentacene, a benchmark material in the field, highlight the unique characteristics and potential applications of DHTAP for advanced devices and as a platform to advanced solid-state physics.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 28","pages":"12977–12987"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5c01435","citationCount":"0","resultStr":"{\"title\":\"Azapentacene Derivative Thin Film Growth on TiO2(110): Morphology and Electronics\",\"authors\":\"W. Bełza,&nbsp;K. Szajna,&nbsp;K. Cieślik,&nbsp;M. Kratzer,&nbsp;A. Matković,&nbsp;M. Krawiec,&nbsp;O. Siri,&nbsp;C. Teichert and F. Krok*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c01435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study delves into the properties of thin films composed of dihydrotetraazapentacene (DHTAP) molecules, primarily exploring their growth and morphology of resulting structures on titanium dioxide (TiO<sub>2</sub>). These molecules are particularly appealing due to their inherent permanent dipole. Employing scanning probe microscopy (SPM) and scanning electron microscopy (SEM) allows for in-depth study of the growth mechanisms. Thermal desorption spectroscopy (TDS) experiments provided deeper insights into the energetics of DHTAP desorption. We have investigated diverse deposition parameters, substrate morphologies, and coverages, revealing intriguing insights into the molecular configurations and their interactions with the substrate. To confirm our experimental findings, we compared the obtained results with density functional theory (DFT) calculations and correlated them also with the growth behavior of pentacene molecules. DHTAP forms distinct structures on TiO<sub>2</sub>(110) surfaces, ranging from small clusters to elongated crystalline needles. A pivotal observation is temperature-dependent growth, where a critical temperature threshold dictates the formation of stable structures. STM images unveiled interesting molecular orientations, originating from the complex interaction between DHTAP molecules and the TiO<sub>2</sub>(110) substrate. As coverage increases, DHTAP molecules self-assemble into a wetting layer, displaying unique configurations influenced by the substrate’s anisotropy. TDS results confirm the weak molecule–substrate interaction. Comparisons with pentacene, a benchmark material in the field, highlight the unique characteristics and potential applications of DHTAP for advanced devices and as a platform to advanced solid-state physics.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 28\",\"pages\":\"12977–12987\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5c01435\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01435\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01435","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入研究了由二氢四氮五烯(DHTAP)分子组成的薄膜的性质,主要探索了其在二氧化钛(TiO2)上的生长和结构形态。这些分子由于其固有的永久偶极子而特别吸引人。利用扫描探针显微镜(SPM)和扫描电子显微镜(SEM)可以深入研究生长机制。热解吸光谱(TDS)实验对DHTAP的解吸过程提供了更深入的认识。我们研究了不同的沉积参数、衬底形态和覆盖范围,揭示了分子构型及其与衬底相互作用的有趣见解。为了证实我们的实验发现,我们将得到的结果与密度泛函理论(DFT)计算结果进行了比较,并将其与并五苯分子的生长行为进行了关联。DHTAP在TiO2(110)表面形成不同的结构,从小簇到细长的结晶针。一个关键的观察是温度依赖性生长,其中一个临界温度阈值决定了稳定结构的形成。STM图像揭示了有趣的分子取向,源于DHTAP分子与TiO2(110)底物之间的复杂相互作用。随着覆盖度的增加,DHTAP分子自组装成一个湿润层,显示出受底物各向异性影响的独特构型。TDS结果证实了分子-底物的弱相互作用。与该领域的基准材料并五苯进行比较,突出了DHTAP在先进器件中的独特特性和潜在应用,并作为先进固态物理的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Azapentacene Derivative Thin Film Growth on TiO2(110): Morphology and Electronics

This study delves into the properties of thin films composed of dihydrotetraazapentacene (DHTAP) molecules, primarily exploring their growth and morphology of resulting structures on titanium dioxide (TiO2). These molecules are particularly appealing due to their inherent permanent dipole. Employing scanning probe microscopy (SPM) and scanning electron microscopy (SEM) allows for in-depth study of the growth mechanisms. Thermal desorption spectroscopy (TDS) experiments provided deeper insights into the energetics of DHTAP desorption. We have investigated diverse deposition parameters, substrate morphologies, and coverages, revealing intriguing insights into the molecular configurations and their interactions with the substrate. To confirm our experimental findings, we compared the obtained results with density functional theory (DFT) calculations and correlated them also with the growth behavior of pentacene molecules. DHTAP forms distinct structures on TiO2(110) surfaces, ranging from small clusters to elongated crystalline needles. A pivotal observation is temperature-dependent growth, where a critical temperature threshold dictates the formation of stable structures. STM images unveiled interesting molecular orientations, originating from the complex interaction between DHTAP molecules and the TiO2(110) substrate. As coverage increases, DHTAP molecules self-assemble into a wetting layer, displaying unique configurations influenced by the substrate’s anisotropy. TDS results confirm the weak molecule–substrate interaction. Comparisons with pentacene, a benchmark material in the field, highlight the unique characteristics and potential applications of DHTAP for advanced devices and as a platform to advanced solid-state physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信