模拟每日烟羽特定烟雾浓度对健康影响的研究,估计火灾规模、烟羽年龄和燃料类型

Sam D. Faulstich*, Matthew J. Strickland, Yan Liu, Marcela Loría-Salazar, Xia Sun, Ash B. Cale and Heather A. Holmes, 
{"title":"模拟每日烟羽特定烟雾浓度对健康影响的研究,估计火灾规模、烟羽年龄和燃料类型","authors":"Sam D. Faulstich*,&nbsp;Matthew J. Strickland,&nbsp;Yan Liu,&nbsp;Marcela Loría-Salazar,&nbsp;Xia Sun,&nbsp;Ash B. Cale and Heather A. Holmes,&nbsp;","doi":"10.1021/acsestair.5c00033","DOIUrl":null,"url":null,"abstract":"<p >Inhaling smoke PM<sub>2.5</sub> can lead to acute health effects like asthma and lung irritation, making it essential to estimate smoke exposure on short time scales. Epidemiological studies that assess these effects need daily, fire-specific ground-level PM<sub>2.5</sub> data, and missing emission information can lead to underestimates. This paper presents a method to estimate daily fire-specific PM<sub>2.5</sub> smoke concentrations in the western United States from 2007 to 2019. Our model uses fire characteristics (e.g., fuel type, fire size, and distance) and updated fire emission inputs in an atmospheric dispersion model to simulate where smoke travels and at what concentration. We then apply a Bayesian time-series model to ground-based EPA monitors to isolate the smoke-specific portion of total PM<sub>2.5</sub>, accounting for meteorology and season. This approach allows us to assess spatial variation in smoke exposure and investigate the role of fire attributes. For example, Lindon, UT experienced 398 fires with modest average concentrations (∼2 μg m<sup>3</sup>), while Carson City, NV saw fewer fires (177) but more intense exposures (∼6 μg m<sup>3</sup>, max 159 μg m<sup>3</sup>). These contrasts highlight the value of linking fire characteristics to daily exposure in health studies and underscore the need to consider transported smoke in fire management strategies.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 8","pages":"1509–1523"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Daily Plume Specific Smoke Concentrations for Health Effects Studies with Estimates of Fire Size, Plume Age, and Fuel Type\",\"authors\":\"Sam D. Faulstich*,&nbsp;Matthew J. Strickland,&nbsp;Yan Liu,&nbsp;Marcela Loría-Salazar,&nbsp;Xia Sun,&nbsp;Ash B. Cale and Heather A. Holmes,&nbsp;\",\"doi\":\"10.1021/acsestair.5c00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inhaling smoke PM<sub>2.5</sub> can lead to acute health effects like asthma and lung irritation, making it essential to estimate smoke exposure on short time scales. Epidemiological studies that assess these effects need daily, fire-specific ground-level PM<sub>2.5</sub> data, and missing emission information can lead to underestimates. This paper presents a method to estimate daily fire-specific PM<sub>2.5</sub> smoke concentrations in the western United States from 2007 to 2019. Our model uses fire characteristics (e.g., fuel type, fire size, and distance) and updated fire emission inputs in an atmospheric dispersion model to simulate where smoke travels and at what concentration. We then apply a Bayesian time-series model to ground-based EPA monitors to isolate the smoke-specific portion of total PM<sub>2.5</sub>, accounting for meteorology and season. This approach allows us to assess spatial variation in smoke exposure and investigate the role of fire attributes. For example, Lindon, UT experienced 398 fires with modest average concentrations (∼2 μg m<sup>3</sup>), while Carson City, NV saw fewer fires (177) but more intense exposures (∼6 μg m<sup>3</sup>, max 159 μg m<sup>3</sup>). These contrasts highlight the value of linking fire characteristics to daily exposure in health studies and underscore the need to consider transported smoke in fire management strategies.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"2 8\",\"pages\":\"1509–1523\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.5c00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.5c00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

吸入烟雾PM2.5会导致哮喘和肺部刺激等急性健康影响,因此有必要在短时间内评估烟雾暴露。评估这些影响的流行病学研究需要每天的、特定火灾的地面PM2.5数据,而缺乏排放信息可能导致低估。本文提出了一种估算2007年至2019年美国西部每日火灾PM2.5烟雾浓度的方法。我们的模型在大气扩散模型中使用火灾特性(例如,燃料类型、火灾规模和距离)和更新的火灾排放输入来模拟烟雾的传播位置和浓度。然后,我们将贝叶斯时间序列模型应用于基于地面的EPA监测仪,以隔离PM2.5总量中烟雾特定的部分,考虑到气象和季节。这种方法使我们能够评估烟雾暴露的空间变化,并调查火灾属性的作用。例如,犹他州林顿市经历了398次火灾,平均浓度适中(~ 2 μg m3),而内华达州卡森市发生的火灾较少(177次),但暴露程度较高(~ 6 μg m3,最高159 μg m3)。这些对比突出了在健康研究中将火灾特征与日常接触联系起来的价值,并强调了在火灾管理战略中考虑运输烟雾的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling Daily Plume Specific Smoke Concentrations for Health Effects Studies with Estimates of Fire Size, Plume Age, and Fuel Type

Modeling Daily Plume Specific Smoke Concentrations for Health Effects Studies with Estimates of Fire Size, Plume Age, and Fuel Type

Inhaling smoke PM2.5 can lead to acute health effects like asthma and lung irritation, making it essential to estimate smoke exposure on short time scales. Epidemiological studies that assess these effects need daily, fire-specific ground-level PM2.5 data, and missing emission information can lead to underestimates. This paper presents a method to estimate daily fire-specific PM2.5 smoke concentrations in the western United States from 2007 to 2019. Our model uses fire characteristics (e.g., fuel type, fire size, and distance) and updated fire emission inputs in an atmospheric dispersion model to simulate where smoke travels and at what concentration. We then apply a Bayesian time-series model to ground-based EPA monitors to isolate the smoke-specific portion of total PM2.5, accounting for meteorology and season. This approach allows us to assess spatial variation in smoke exposure and investigate the role of fire attributes. For example, Lindon, UT experienced 398 fires with modest average concentrations (∼2 μg m3), while Carson City, NV saw fewer fires (177) but more intense exposures (∼6 μg m3, max 159 μg m3). These contrasts highlight the value of linking fire characteristics to daily exposure in health studies and underscore the need to consider transported smoke in fire management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信