cd3p2基体系热电性能的增强:Cd3P1.4As0.6

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Chenjian Fu, Kunling Peng*, Sikang Zheng, Qihong Xiong, Zhanchang Gu, Jianjun Ying, Sheng Zhang, Xu Lu, Wenbin Yi*, Guoyu Wang* and Xiaoyuan Zhou, 
{"title":"cd3p2基体系热电性能的增强:Cd3P1.4As0.6","authors":"Chenjian Fu,&nbsp;Kunling Peng*,&nbsp;Sikang Zheng,&nbsp;Qihong Xiong,&nbsp;Zhanchang Gu,&nbsp;Jianjun Ying,&nbsp;Sheng Zhang,&nbsp;Xu Lu,&nbsp;Wenbin Yi*,&nbsp;Guoyu Wang* and Xiaoyuan Zhou,&nbsp;","doi":"10.1021/acsaem.5c01824","DOIUrl":null,"url":null,"abstract":"<p >In this work, we report the enhanced thermoelectric performance of Cd<sub>3</sub>P<sub>1.4</sub>As<sub>0.6</sub> solid solutions achieved through an optimized synthesis procedure. By precisely controlling the phosphorus content to regulate carrier density, we obtained a peak <i>zT</i> of 0.8 at 673 K and an average <i>zT</i> of 0.57 across the entire temperature range, surpassing the performance of the parent Cd<sub>3</sub>P<sub>2</sub> compound. Theoretical analysis suggests a further potential for improvement with a projected peak <i>zT</i> of 1.4. Notably, the material exhibits a high power factor exceeding 1.65 mW m<sup>–1</sup> K<sup>–2</sup>, reaching the highest reported values for Cd<sub>3</sub>P<sub>2</sub>-based systems, enabled by high carrier mobility exceeding 1200 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> over the entire temperature range. Based on these results, we propose three key strategies for future optimization: (i) balanced thermal processing, (ii) phase purity control, and (iii) tailored microstructure engineering. This study establishes a new performance benchmark and provides a methodological foundation for the development of high-performance Cd<sub>3</sub>P<sub>2</sub>-based thermoelectric materials.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 15","pages":"11652–11660"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Thermoelectric Performance in a Cd3P2-Based Systems: Cd3P1.4As0.6\",\"authors\":\"Chenjian Fu,&nbsp;Kunling Peng*,&nbsp;Sikang Zheng,&nbsp;Qihong Xiong,&nbsp;Zhanchang Gu,&nbsp;Jianjun Ying,&nbsp;Sheng Zhang,&nbsp;Xu Lu,&nbsp;Wenbin Yi*,&nbsp;Guoyu Wang* and Xiaoyuan Zhou,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this work, we report the enhanced thermoelectric performance of Cd<sub>3</sub>P<sub>1.4</sub>As<sub>0.6</sub> solid solutions achieved through an optimized synthesis procedure. By precisely controlling the phosphorus content to regulate carrier density, we obtained a peak <i>zT</i> of 0.8 at 673 K and an average <i>zT</i> of 0.57 across the entire temperature range, surpassing the performance of the parent Cd<sub>3</sub>P<sub>2</sub> compound. Theoretical analysis suggests a further potential for improvement with a projected peak <i>zT</i> of 1.4. Notably, the material exhibits a high power factor exceeding 1.65 mW m<sup>–1</sup> K<sup>–2</sup>, reaching the highest reported values for Cd<sub>3</sub>P<sub>2</sub>-based systems, enabled by high carrier mobility exceeding 1200 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> over the entire temperature range. Based on these results, we propose three key strategies for future optimization: (i) balanced thermal processing, (ii) phase purity control, and (iii) tailored microstructure engineering. This study establishes a new performance benchmark and provides a methodological foundation for the development of high-performance Cd<sub>3</sub>P<sub>2</sub>-based thermoelectric materials.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 15\",\"pages\":\"11652–11660\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01824\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01824","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们报告了通过优化的合成工艺获得的Cd3P1.4As0.6固溶体的热电性能增强。通过精确控制磷含量来调节载流子密度,我们获得了673 K时zT峰值为0.8,在整个温度范围内平均zT为0.57,超过了母体Cd3P2化合物的性能。理论分析表明,进一步改善的潜力,预计峰值zT为1.4。值得注意的是,该材料具有超过1.65 mW m-1 K-2的高功率因数,达到基于cd3p2的系统的最高值,在整个温度范围内具有超过1200 cm2 V-1 s-1的高载流子迁移率。基于这些结果,我们提出了未来优化的三个关键策略:(i)平衡热处理,(ii)相纯度控制和(iii)量身定制的微观结构工程。本研究建立了新的性能基准,为开发高性能cd3p2基热电材料提供了方法学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancement of Thermoelectric Performance in a Cd3P2-Based Systems: Cd3P1.4As0.6

Enhancement of Thermoelectric Performance in a Cd3P2-Based Systems: Cd3P1.4As0.6

In this work, we report the enhanced thermoelectric performance of Cd3P1.4As0.6 solid solutions achieved through an optimized synthesis procedure. By precisely controlling the phosphorus content to regulate carrier density, we obtained a peak zT of 0.8 at 673 K and an average zT of 0.57 across the entire temperature range, surpassing the performance of the parent Cd3P2 compound. Theoretical analysis suggests a further potential for improvement with a projected peak zT of 1.4. Notably, the material exhibits a high power factor exceeding 1.65 mW m–1 K–2, reaching the highest reported values for Cd3P2-based systems, enabled by high carrier mobility exceeding 1200 cm2 V–1 s–1 over the entire temperature range. Based on these results, we propose three key strategies for future optimization: (i) balanced thermal processing, (ii) phase purity control, and (iii) tailored microstructure engineering. This study establishes a new performance benchmark and provides a methodological foundation for the development of high-performance Cd3P2-based thermoelectric materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信