五烯:一种高塞贝克系数的高性能热电材料

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nirmal Barman,  and , Utpal Sarkar*, 
{"title":"五烯:一种高塞贝克系数的高性能热电材料","authors":"Nirmal Barman,&nbsp; and ,&nbsp;Utpal Sarkar*,&nbsp;","doi":"10.1021/acsaem.5c01477","DOIUrl":null,"url":null,"abstract":"<p >The growing global demand for energy necessitates the exploration of innovative solutions for efficient energy conversion as a result of which thermoelectric materials have garnered significant attention in recent years. In this study, we theoretically investigate the thermoelectric transport properties of pentagraphyne, a promising two-dimensional material. Utilizing the nonequilibrium Green’s function approach, we analyze key thermoelectric parameters that include the Seebeck coefficient, electrical and thermal conductances (both electronic and phononic), and the thermoelectric figure of merit (<i>ZT</i>). Pentagraphyne exhibits an exceptionally ultrahigh Seebeck coefficient at room temperature, surpassing conventional thermoelectric materials and affirming its potential for advanced energy conversion applications. At room temperature, pentagraphyne achieves a thermoelectric figure of merit of <i>ZT</i> = 1.15 at a chemical potential (μ) = −1.74 eV. Remarkably, pentagraphyne maintains 0.60 ≤ <i>ZT</i> ≤ 1.26 over a broad temperature range from 200 to 700 K, demonstrating its suitability for sustainable and efficient energy conversion under varying thermal conditions. Notably, optical phonon modes dominate its lattice thermal transport, contributing 80% at 200 K and increasing to 89% at 700 K, while acoustic contributions decrease from 20% to 11%, respectively. These findings highlight pentagraphyne’s potential as a next-generation thermoelectric material, paving the way for innovative applications in renewable energy technologies.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 15","pages":"11329–11341"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentagraphyne: A High-Performance Thermoelectric Material with High Seebeck Coefficient\",\"authors\":\"Nirmal Barman,&nbsp; and ,&nbsp;Utpal Sarkar*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The growing global demand for energy necessitates the exploration of innovative solutions for efficient energy conversion as a result of which thermoelectric materials have garnered significant attention in recent years. In this study, we theoretically investigate the thermoelectric transport properties of pentagraphyne, a promising two-dimensional material. Utilizing the nonequilibrium Green’s function approach, we analyze key thermoelectric parameters that include the Seebeck coefficient, electrical and thermal conductances (both electronic and phononic), and the thermoelectric figure of merit (<i>ZT</i>). Pentagraphyne exhibits an exceptionally ultrahigh Seebeck coefficient at room temperature, surpassing conventional thermoelectric materials and affirming its potential for advanced energy conversion applications. At room temperature, pentagraphyne achieves a thermoelectric figure of merit of <i>ZT</i> = 1.15 at a chemical potential (μ) = −1.74 eV. Remarkably, pentagraphyne maintains 0.60 ≤ <i>ZT</i> ≤ 1.26 over a broad temperature range from 200 to 700 K, demonstrating its suitability for sustainable and efficient energy conversion under varying thermal conditions. Notably, optical phonon modes dominate its lattice thermal transport, contributing 80% at 200 K and increasing to 89% at 700 K, while acoustic contributions decrease from 20% to 11%, respectively. These findings highlight pentagraphyne’s potential as a next-generation thermoelectric material, paving the way for innovative applications in renewable energy technologies.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 15\",\"pages\":\"11329–11341\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01477\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01477","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

日益增长的全球能源需求要求探索高效能源转换的创新解决方案,因此热电材料近年来受到了极大的关注。在这项研究中,我们从理论上研究了五烯烷的热电输运性质,这是一种有前途的二维材料。利用非平衡格林函数方法,我们分析了关键的热电参数,包括塞贝克系数,电导和热导(电子和声子),以及热电优值(ZT)。Pentagraphyne在室温下表现出超高的塞贝克系数,超越了传统的热电材料,并肯定了其在先进能量转换应用中的潜力。在室温下,在化学势(μ) = - 1.74 eV时,五烯石墨烯的热电优值为ZT = 1.15。值得注意的是,在200 ~ 700 K的宽温度范围内,pentagraphyne保持0.60≤ZT≤1.26,表明它适合在不同的热条件下持续高效地进行能量转换。值得注意的是,光学声子模式主导其晶格热输运,在200 K时贡献80%,在700 K时增加到89%,而声学贡献分别从20%下降到11%。这些发现突出了五烯醚作为下一代热电材料的潜力,为可再生能源技术的创新应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pentagraphyne: A High-Performance Thermoelectric Material with High Seebeck Coefficient

Pentagraphyne: A High-Performance Thermoelectric Material with High Seebeck Coefficient

The growing global demand for energy necessitates the exploration of innovative solutions for efficient energy conversion as a result of which thermoelectric materials have garnered significant attention in recent years. In this study, we theoretically investigate the thermoelectric transport properties of pentagraphyne, a promising two-dimensional material. Utilizing the nonequilibrium Green’s function approach, we analyze key thermoelectric parameters that include the Seebeck coefficient, electrical and thermal conductances (both electronic and phononic), and the thermoelectric figure of merit (ZT). Pentagraphyne exhibits an exceptionally ultrahigh Seebeck coefficient at room temperature, surpassing conventional thermoelectric materials and affirming its potential for advanced energy conversion applications. At room temperature, pentagraphyne achieves a thermoelectric figure of merit of ZT = 1.15 at a chemical potential (μ) = −1.74 eV. Remarkably, pentagraphyne maintains 0.60 ≤ ZT ≤ 1.26 over a broad temperature range from 200 to 700 K, demonstrating its suitability for sustainable and efficient energy conversion under varying thermal conditions. Notably, optical phonon modes dominate its lattice thermal transport, contributing 80% at 200 K and increasing to 89% at 700 K, while acoustic contributions decrease from 20% to 11%, respectively. These findings highlight pentagraphyne’s potential as a next-generation thermoelectric material, paving the way for innovative applications in renewable energy technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信