超薄V2O5电极在水溶液锌离子电池中的扩散主导电荷存储

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yujin Lim,  and , Byoung-Nam Park*, 
{"title":"超薄V2O5电极在水溶液锌离子电池中的扩散主导电荷存储","authors":"Yujin Lim,&nbsp; and ,&nbsp;Byoung-Nam Park*,&nbsp;","doi":"10.1021/acs.jpcc.5c04232","DOIUrl":null,"url":null,"abstract":"<p >In this work, we report the development of an additive-free and electrolyte/electrode interface-sensitive vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) cathode for aqueous zinc-ion batteries (ZIBs), fabricated via alternating current electrophoretic deposition (AC-EPD) onto stainless steel foil. X-ray diffraction analysis confirms the formation of highly crystalline, phase-pure orthorhombic V<sub>2</sub>O<sub>5</sub> with preferential orientation. Electrochemical testing shows stable and reversible Zn<sup>2+</sup> intercalation, with the electrode delivering ∼120 mAh/g at 0.5 C and excellent rate performance within a narrower 1.0–1.5 V window, instead of the typical 0.1–1.5 V range. Scan rate-dependent cyclic voltammetry and <i>b</i>-value analysis reveal that the charge storage in the ultrathin V<sub>2</sub>O<sub>5</sub> film is predominantly governed by diffusion-controlled processes. This behavior aligns with the intrinsic layered crystal structure of V<sub>2</sub>O<sub>5</sub>, which facilitates bulk Zn<sup>2+</sup> intercalation rather than surface-limited capacitive reactions. This study shows that ultrathin V<sub>2</sub>O<sub>5</sub> electrodes made by AC-EPD deliver high capacity and stable Zn-ion storage. Despite their thinness, charge storage is mainly diffusion-controlled due to the layered structure. To our knowledge, this is the first report demonstrating that diffusion-controlled Zn<sup>2+</sup> intercalation remains the dominant mechanism in ultrathin, binder-free V<sub>2</sub>O<sub>5</sub> electrodes, thereby establishing a definitive baseline for structure–function analyses in layered oxides. This provides new insight into bulk intercalation behavior in interface-sensitive systems.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 31","pages":"13903–13909"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing Diffusion-Dominated Charge Storage in Ultrathin V2O5 Electrodes for Aqueous Zn-Ion Batteries\",\"authors\":\"Yujin Lim,&nbsp; and ,&nbsp;Byoung-Nam Park*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c04232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this work, we report the development of an additive-free and electrolyte/electrode interface-sensitive vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) cathode for aqueous zinc-ion batteries (ZIBs), fabricated via alternating current electrophoretic deposition (AC-EPD) onto stainless steel foil. X-ray diffraction analysis confirms the formation of highly crystalline, phase-pure orthorhombic V<sub>2</sub>O<sub>5</sub> with preferential orientation. Electrochemical testing shows stable and reversible Zn<sup>2+</sup> intercalation, with the electrode delivering ∼120 mAh/g at 0.5 C and excellent rate performance within a narrower 1.0–1.5 V window, instead of the typical 0.1–1.5 V range. Scan rate-dependent cyclic voltammetry and <i>b</i>-value analysis reveal that the charge storage in the ultrathin V<sub>2</sub>O<sub>5</sub> film is predominantly governed by diffusion-controlled processes. This behavior aligns with the intrinsic layered crystal structure of V<sub>2</sub>O<sub>5</sub>, which facilitates bulk Zn<sup>2+</sup> intercalation rather than surface-limited capacitive reactions. This study shows that ultrathin V<sub>2</sub>O<sub>5</sub> electrodes made by AC-EPD deliver high capacity and stable Zn-ion storage. Despite their thinness, charge storage is mainly diffusion-controlled due to the layered structure. To our knowledge, this is the first report demonstrating that diffusion-controlled Zn<sup>2+</sup> intercalation remains the dominant mechanism in ultrathin, binder-free V<sub>2</sub>O<sub>5</sub> electrodes, thereby establishing a definitive baseline for structure–function analyses in layered oxides. This provides new insight into bulk intercalation behavior in interface-sensitive systems.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 31\",\"pages\":\"13903–13909\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04232\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04232","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们报道了一种无添加剂和电解质/电极界面敏感的五氧化钒(V2O5)阴极的开发,该阴极通过交流电泳沉积(AC-EPD)在不锈钢箔上制备。x射线衍射分析证实形成了高结晶、相纯、择优取向的正交V2O5。电化学测试表明,Zn2+插层稳定且可逆,电极在0.5℃下传输约120 mAh/g,在1.0-1.5 V窗口内具有优异的速率性能,而不是典型的0.1-1.5 V范围。扫描速率相关的循环伏安法和b值分析表明,超薄V2O5薄膜中的电荷存储主要受扩散控制过程的控制。这种行为与V2O5固有的层状晶体结构一致,有利于Zn2+的大量插入,而不是表面限制的电容性反应。本研究表明,由AC-EPD制成的超薄V2O5电极具有高容量和稳定的锌离子存储能力。尽管它们很薄,但由于层状结构,电荷存储主要是扩散控制的。据我们所知,这是第一个证明扩散控制的Zn2+嵌入仍然是超薄、无粘合剂的V2O5电极的主要机制的报告,从而为层状氧化物的结构-功能分析建立了明确的基线。这为接口敏感系统中的批量插入行为提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing Diffusion-Dominated Charge Storage in Ultrathin V2O5 Electrodes for Aqueous Zn-Ion Batteries

Revealing Diffusion-Dominated Charge Storage in Ultrathin V2O5 Electrodes for Aqueous Zn-Ion Batteries

In this work, we report the development of an additive-free and electrolyte/electrode interface-sensitive vanadium pentoxide (V2O5) cathode for aqueous zinc-ion batteries (ZIBs), fabricated via alternating current electrophoretic deposition (AC-EPD) onto stainless steel foil. X-ray diffraction analysis confirms the formation of highly crystalline, phase-pure orthorhombic V2O5 with preferential orientation. Electrochemical testing shows stable and reversible Zn2+ intercalation, with the electrode delivering ∼120 mAh/g at 0.5 C and excellent rate performance within a narrower 1.0–1.5 V window, instead of the typical 0.1–1.5 V range. Scan rate-dependent cyclic voltammetry and b-value analysis reveal that the charge storage in the ultrathin V2O5 film is predominantly governed by diffusion-controlled processes. This behavior aligns with the intrinsic layered crystal structure of V2O5, which facilitates bulk Zn2+ intercalation rather than surface-limited capacitive reactions. This study shows that ultrathin V2O5 electrodes made by AC-EPD deliver high capacity and stable Zn-ion storage. Despite their thinness, charge storage is mainly diffusion-controlled due to the layered structure. To our knowledge, this is the first report demonstrating that diffusion-controlled Zn2+ intercalation remains the dominant mechanism in ultrathin, binder-free V2O5 electrodes, thereby establishing a definitive baseline for structure–function analyses in layered oxides. This provides new insight into bulk intercalation behavior in interface-sensitive systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信