酸蚀LaFe2O4-WO3异质结构复合阴极制备高性能低温陶瓷燃料电池

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qiang Liu, Naveed Mushtaq, Badriah S. Almutairi, M. A. K. Yousaf Shah, Lei Zhang* and Yuzheng Lu*, 
{"title":"酸蚀LaFe2O4-WO3异质结构复合阴极制备高性能低温陶瓷燃料电池","authors":"Qiang Liu,&nbsp;Naveed Mushtaq,&nbsp;Badriah S. Almutairi,&nbsp;M. A. K. Yousaf Shah,&nbsp;Lei Zhang* and Yuzheng Lu*,&nbsp;","doi":"10.1021/acsaem.5c01029","DOIUrl":null,"url":null,"abstract":"<p >Efficient oxygen reduction reaction (ORR) electrocatalysts are important for developing high-performance electrochemical energy devices. Especially, the ceramic fuel cells suffer from the poor ORR activity at cathode surface when operating at lower temperature range. Here, we report an acidic etching approach to improve the ORR activity of the LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> composite cathode. The LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> heterostructure cathode material has shown an improved ORR activity when operating at 450–550 °C after acidic etching in H<sub>2</sub>SO<sub>4</sub>. The H<sub>2</sub>SO<sub>4</sub>-etched LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> cathode has exhibited an area-specific-resistance (ASR) of only 0.18 Ω cm<sup>2</sup> and an impressive power density of 782 mW·cm<sup>–2</sup> at 550 °C using proton conducting BaZr<sub>0.2</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>O<sub>3</sub> electrolyte. The use of acidic etching to modify the surface of the LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> composite is found to be an effective strategy. By introducing surface defects and increasing the specific surface area, the acidic treatment can significantly enhance the electrochemical performance by providing more active sites for the oxygen reduction reaction (ORR). Furthermore, this modification may improve the interfacial interaction between LaFe<sub>2</sub>O<sub>4</sub> and WO<sub>3</sub>, thereby facilitating better electron and ion transport within the composite cathode. However, this methodology can be considered to develop high-performance low-temperature cathode materials.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 15","pages":"10939–10948"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing High-Performance Low-Temperature Ceramic Fuel Cells Using an Acidic-Etched LaFe2O4–WO3 Heterostructure Composite Cathode\",\"authors\":\"Qiang Liu,&nbsp;Naveed Mushtaq,&nbsp;Badriah S. Almutairi,&nbsp;M. A. K. Yousaf Shah,&nbsp;Lei Zhang* and Yuzheng Lu*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Efficient oxygen reduction reaction (ORR) electrocatalysts are important for developing high-performance electrochemical energy devices. Especially, the ceramic fuel cells suffer from the poor ORR activity at cathode surface when operating at lower temperature range. Here, we report an acidic etching approach to improve the ORR activity of the LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> composite cathode. The LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> heterostructure cathode material has shown an improved ORR activity when operating at 450–550 °C after acidic etching in H<sub>2</sub>SO<sub>4</sub>. The H<sub>2</sub>SO<sub>4</sub>-etched LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> cathode has exhibited an area-specific-resistance (ASR) of only 0.18 Ω cm<sup>2</sup> and an impressive power density of 782 mW·cm<sup>–2</sup> at 550 °C using proton conducting BaZr<sub>0.2</sub>Ce<sub>0.7</sub>Y<sub>0.1</sub>O<sub>3</sub> electrolyte. The use of acidic etching to modify the surface of the LaFe<sub>2</sub>O<sub>4</sub>–WO<sub>3</sub> composite is found to be an effective strategy. By introducing surface defects and increasing the specific surface area, the acidic treatment can significantly enhance the electrochemical performance by providing more active sites for the oxygen reduction reaction (ORR). Furthermore, this modification may improve the interfacial interaction between LaFe<sub>2</sub>O<sub>4</sub> and WO<sub>3</sub>, thereby facilitating better electron and ion transport within the composite cathode. However, this methodology can be considered to develop high-performance low-temperature cathode materials.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 15\",\"pages\":\"10939–10948\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01029\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01029","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效氧还原反应(ORR)电催化剂是开发高性能电化学能源装置的重要手段。特别是陶瓷燃料电池在较低温度范围内工作时,阴极表面ORR活性较差。在这里,我们报道了一种酸性蚀刻方法来提高LaFe2O4-WO3复合阴极的ORR活性。LaFe2O4-WO3异质结构正极材料经H2SO4酸性蚀刻后,在450 ~ 550℃工作时,ORR活性有所提高。采用质子导电的BaZr0.2Ce0.7Y0.1O3电解液制备的h2so4蚀刻的LaFe2O4-WO3阴极在550℃下的面积比电阻(ASR)仅为0.18 Ω cm2,功率密度为782 mW·cm-2。采用酸性蚀刻法对LaFe2O4-WO3复合材料表面进行改性是一种有效的方法。通过引入表面缺陷和增加比表面积,酸性处理可以为氧还原反应(ORR)提供更多的活性位点,从而显著提高电化学性能。此外,这种修饰可以改善LaFe2O4和WO3之间的界面相互作用,从而更好地促进复合阴极内电子和离子的传递。然而,这种方法可以考虑开发高性能的低温阴极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Developing High-Performance Low-Temperature Ceramic Fuel Cells Using an Acidic-Etched LaFe2O4–WO3 Heterostructure Composite Cathode

Developing High-Performance Low-Temperature Ceramic Fuel Cells Using an Acidic-Etched LaFe2O4–WO3 Heterostructure Composite Cathode

Efficient oxygen reduction reaction (ORR) electrocatalysts are important for developing high-performance electrochemical energy devices. Especially, the ceramic fuel cells suffer from the poor ORR activity at cathode surface when operating at lower temperature range. Here, we report an acidic etching approach to improve the ORR activity of the LaFe2O4–WO3 composite cathode. The LaFe2O4–WO3 heterostructure cathode material has shown an improved ORR activity when operating at 450–550 °C after acidic etching in H2SO4. The H2SO4-etched LaFe2O4–WO3 cathode has exhibited an area-specific-resistance (ASR) of only 0.18 Ω cm2 and an impressive power density of 782 mW·cm–2 at 550 °C using proton conducting BaZr0.2Ce0.7Y0.1O3 electrolyte. The use of acidic etching to modify the surface of the LaFe2O4–WO3 composite is found to be an effective strategy. By introducing surface defects and increasing the specific surface area, the acidic treatment can significantly enhance the electrochemical performance by providing more active sites for the oxygen reduction reaction (ORR). Furthermore, this modification may improve the interfacial interaction between LaFe2O4 and WO3, thereby facilitating better electron and ion transport within the composite cathode. However, this methodology can be considered to develop high-performance low-temperature cathode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信