{"title":"用原位选择性硫化法制备高性能超级电容器用混合维结构Cu2S@NiMn-LDH@Co4S3材料","authors":"Xiaocheng Liu, Liru Yan, Shishuai Sun*, Jianyu Du* and Shougen Yin*, ","doi":"10.1021/acsaem.5c00738","DOIUrl":null,"url":null,"abstract":"<p >The development of multicomponent composite electrode materials with mixed-dimensional architectures is essential for improving both the area-specific capacitance and long cycling stability of high-energy-density supercapacitors. Hence, we successfully developed a 1D Cu<sub>2</sub>S nanowire–2D NiMn–LDH nanosheet–0D Co<sub>4</sub>S<sub>3</sub> hierarchical heterostructure through selective sulfidation and a synergistic design strategy involving mixed-dimensional structures. Electrochemical tests show that the resulting electrode achieves an ultrahigh area-specific capacitance of 14.78 F cm<sup>–2</sup> at 10 mA cm<sup>–2</sup> and an excellent retention capacitance of 80.56% over 5000 cycles. Additionally, the Cu<sub>2</sub>S@NiMn-LDH@Co<sub>4</sub>S<sub>3</sub>//AC asymmetric supercapacitor (ASC) device demonstrates an ultrahigh energy density/power density (2.32 mWh cm<sup>–2</sup>/9 mW cm<sup>–2</sup>), with an outstanding retention capacitance of 76.22% at 30 mA cm<sup>–2</sup> over 10000 cycles. The selective sulfidation process enables 1D Cu<sub>2</sub>S to provide structural support, 2D NiMn-LDH to offer a large surface area, and 0D Co<sub>4</sub>S<sub>3</sub> nanoparticles to introduce additional active sites. This unique structure demonstrates excellent stability, with synergistic interactions among components accelerating redox reactions and enhancing electron transfer rates.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 14","pages":"10071–10081"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of the Cu2S@NiMn-LDH@Co4S3 Material with Mixed-Dimensional Structures by In Situ Selective Vulcanization for High-Performance Supercapacitors\",\"authors\":\"Xiaocheng Liu, Liru Yan, Shishuai Sun*, Jianyu Du* and Shougen Yin*, \",\"doi\":\"10.1021/acsaem.5c00738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of multicomponent composite electrode materials with mixed-dimensional architectures is essential for improving both the area-specific capacitance and long cycling stability of high-energy-density supercapacitors. Hence, we successfully developed a 1D Cu<sub>2</sub>S nanowire–2D NiMn–LDH nanosheet–0D Co<sub>4</sub>S<sub>3</sub> hierarchical heterostructure through selective sulfidation and a synergistic design strategy involving mixed-dimensional structures. Electrochemical tests show that the resulting electrode achieves an ultrahigh area-specific capacitance of 14.78 F cm<sup>–2</sup> at 10 mA cm<sup>–2</sup> and an excellent retention capacitance of 80.56% over 5000 cycles. Additionally, the Cu<sub>2</sub>S@NiMn-LDH@Co<sub>4</sub>S<sub>3</sub>//AC asymmetric supercapacitor (ASC) device demonstrates an ultrahigh energy density/power density (2.32 mWh cm<sup>–2</sup>/9 mW cm<sup>–2</sup>), with an outstanding retention capacitance of 76.22% at 30 mA cm<sup>–2</sup> over 10000 cycles. The selective sulfidation process enables 1D Cu<sub>2</sub>S to provide structural support, 2D NiMn-LDH to offer a large surface area, and 0D Co<sub>4</sub>S<sub>3</sub> nanoparticles to introduce additional active sites. This unique structure demonstrates excellent stability, with synergistic interactions among components accelerating redox reactions and enhancing electron transfer rates.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 14\",\"pages\":\"10071–10081\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c00738\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00738","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
发展具有混合维结构的多组分复合电极材料对于提高高能量密度超级电容器的面积比电容和长循环稳定性至关重要。因此,我们通过选择性硫化和涉及混合维结构的协同设计策略,成功地开发了1D Cu2S纳米线- 2d NiMn-LDH纳米片- 0d Co4S3分层异质结构。电化学测试表明,该电极在10 mA cm-2条件下具有14.78 F cm-2的超高面积比电容,在5000次循环中具有80.56%的优异保持电容。此外,Cu2S@NiMn-LDH@Co4S3//AC非对称超级电容器(ASC)器件显示出超高的能量密度/功率密度(2.32 mWh cm-2 /9 mW cm-2),在30 mA cm-2下,超过10000次循环的保持电容为76.22%。选择性硫化过程使1D Cu2S提供结构支持,2D NiMn-LDH提供大表面积,0D Co4S3纳米颗粒引入额外的活性位点。这种独特的结构表现出优异的稳定性,组分之间的协同相互作用加速了氧化还原反应,提高了电子转移速率。
Fabrication of the Cu2S@NiMn-LDH@Co4S3 Material with Mixed-Dimensional Structures by In Situ Selective Vulcanization for High-Performance Supercapacitors
The development of multicomponent composite electrode materials with mixed-dimensional architectures is essential for improving both the area-specific capacitance and long cycling stability of high-energy-density supercapacitors. Hence, we successfully developed a 1D Cu2S nanowire–2D NiMn–LDH nanosheet–0D Co4S3 hierarchical heterostructure through selective sulfidation and a synergistic design strategy involving mixed-dimensional structures. Electrochemical tests show that the resulting electrode achieves an ultrahigh area-specific capacitance of 14.78 F cm–2 at 10 mA cm–2 and an excellent retention capacitance of 80.56% over 5000 cycles. Additionally, the Cu2S@NiMn-LDH@Co4S3//AC asymmetric supercapacitor (ASC) device demonstrates an ultrahigh energy density/power density (2.32 mWh cm–2/9 mW cm–2), with an outstanding retention capacitance of 76.22% at 30 mA cm–2 over 10000 cycles. The selective sulfidation process enables 1D Cu2S to provide structural support, 2D NiMn-LDH to offer a large surface area, and 0D Co4S3 nanoparticles to introduce additional active sites. This unique structure demonstrates excellent stability, with synergistic interactions among components accelerating redox reactions and enhancing electron transfer rates.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.