氧化铋甲酸酯纳米线和聚偏氟乙烯-六氟丙烯纤维增强聚环氧乙烷基固态电解质

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Lili Yang, Yi Liang, Puyi Lei, Min Zhong, Wenzhuo Shen, Jiali Zhang and Shouwu Guo*, 
{"title":"氧化铋甲酸酯纳米线和聚偏氟乙烯-六氟丙烯纤维增强聚环氧乙烷基固态电解质","authors":"Lili Yang,&nbsp;Yi Liang,&nbsp;Puyi Lei,&nbsp;Min Zhong,&nbsp;Wenzhuo Shen,&nbsp;Jiali Zhang and Shouwu Guo*,&nbsp;","doi":"10.1021/acsaem.5c01380","DOIUrl":null,"url":null,"abstract":"<p >Poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs) have attracted significant attention owing to their unique flexibility, great surface affinity to electrodes, and ease of processing. Nevertheless, the poor ionic conductivity and mechanical strength hinder their practical applications. In this work, we prepared PEO-based SSEs by blending bismuth oxide formate (BiOCOOH) nanowires with poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) fibers and PEO-containing lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) through coaxial electrospinning, followed by heat treatment. The well-dispersed BiOCOOH nanowires immobilize TFSI<sup>–</sup> through positively charged BiO<sup>+</sup> groups, thereby improving Li<sup>+</sup> conductivity. The unique morphology of BiOCOOH nanowires also reduces the degree of crystallinity in the PEO, boosting the ionic conductivity of the SSEs. The interconnected PVDF-HFP fibers as hosts can provide the mechanical strength of the SSEs. Moreover, these fibers can accelerate the dissociation of LiTFSI. The as-fabricated electrolyte shows an excellent ionic conductivity (1.56 × 10<sup>–4</sup> S cm<sup>–1</sup>) and a high Li<sup>+</sup> transference number (0.51). The LiFePO<sub>4</sub>||SSEs||Li cells with the as-prepared electrolyte exhibit high specific capacity after more than 600 charge/discharging cycles at 25 °C.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 14","pages":"10519–10528"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth Oxide Formate Nanowires and Poly(vinylidene fluoride-hexafluoropropylene) Fibers Enhanced Poly(ethylene oxide)-Based Solid-State Electrolytes\",\"authors\":\"Lili Yang,&nbsp;Yi Liang,&nbsp;Puyi Lei,&nbsp;Min Zhong,&nbsp;Wenzhuo Shen,&nbsp;Jiali Zhang and Shouwu Guo*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs) have attracted significant attention owing to their unique flexibility, great surface affinity to electrodes, and ease of processing. Nevertheless, the poor ionic conductivity and mechanical strength hinder their practical applications. In this work, we prepared PEO-based SSEs by blending bismuth oxide formate (BiOCOOH) nanowires with poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) fibers and PEO-containing lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) through coaxial electrospinning, followed by heat treatment. The well-dispersed BiOCOOH nanowires immobilize TFSI<sup>–</sup> through positively charged BiO<sup>+</sup> groups, thereby improving Li<sup>+</sup> conductivity. The unique morphology of BiOCOOH nanowires also reduces the degree of crystallinity in the PEO, boosting the ionic conductivity of the SSEs. The interconnected PVDF-HFP fibers as hosts can provide the mechanical strength of the SSEs. Moreover, these fibers can accelerate the dissociation of LiTFSI. The as-fabricated electrolyte shows an excellent ionic conductivity (1.56 × 10<sup>–4</sup> S cm<sup>–1</sup>) and a high Li<sup>+</sup> transference number (0.51). The LiFePO<sub>4</sub>||SSEs||Li cells with the as-prepared electrolyte exhibit high specific capacity after more than 600 charge/discharging cycles at 25 °C.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 14\",\"pages\":\"10519–10528\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01380\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01380","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚环氧乙烷(PEO)基固态电解质(ssi)因其独特的柔韧性、对电极的表面亲和性和易于加工而备受关注。然而,较差的离子电导率和机械强度阻碍了它们的实际应用。在这项工作中,我们将氧化铋甲酸酯(BiOCOOH)纳米线与聚偏氟乙烯-六氟丙烯(PVDF-HFP)纤维和含peo的双(三氟甲烷磺酰)亚胺(LiTFSI)通过同轴静电纺丝共混,然后热处理,制备了peo基sse。分散良好的BiOCOOH纳米线通过带正电荷的BiO+基团固定TFSI -,从而提高Li+的导电性。BiOCOOH纳米线的独特形态也降低了PEO的结晶度,提高了sce的离子电导率。PVDF-HFP光纤作为主机互连可以提供sse的机械强度。此外,这些纤维可以加速LiTFSI的解离。制备的电解质具有优异的离子电导率(1.56 × 10-4 S cm-1)和较高的Li+转移数(0.51)。使用该电解质制备的LiFePO4|| s||锂电池在25℃条件下经过600多次充放电循环后显示出较高的比容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bismuth Oxide Formate Nanowires and Poly(vinylidene fluoride-hexafluoropropylene) Fibers Enhanced Poly(ethylene oxide)-Based Solid-State Electrolytes

Bismuth Oxide Formate Nanowires and Poly(vinylidene fluoride-hexafluoropropylene) Fibers Enhanced Poly(ethylene oxide)-Based Solid-State Electrolytes

Poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs) have attracted significant attention owing to their unique flexibility, great surface affinity to electrodes, and ease of processing. Nevertheless, the poor ionic conductivity and mechanical strength hinder their practical applications. In this work, we prepared PEO-based SSEs by blending bismuth oxide formate (BiOCOOH) nanowires with poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) fibers and PEO-containing lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) through coaxial electrospinning, followed by heat treatment. The well-dispersed BiOCOOH nanowires immobilize TFSI through positively charged BiO+ groups, thereby improving Li+ conductivity. The unique morphology of BiOCOOH nanowires also reduces the degree of crystallinity in the PEO, boosting the ionic conductivity of the SSEs. The interconnected PVDF-HFP fibers as hosts can provide the mechanical strength of the SSEs. Moreover, these fibers can accelerate the dissociation of LiTFSI. The as-fabricated electrolyte shows an excellent ionic conductivity (1.56 × 10–4 S cm–1) and a high Li+ transference number (0.51). The LiFePO4||SSEs||Li cells with the as-prepared electrolyte exhibit high specific capacity after more than 600 charge/discharging cycles at 25 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信