离子液体塑化络合物的温度依赖弛豫动力学

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Sophie G. M. van Lange*, Riccardo Biella, Diane W. te Brake, Sinty Dol, Maarten Besten, Joris Sprakel, Santiago J. Garcia and Jasper van der Gucht*, 
{"title":"离子液体塑化络合物的温度依赖弛豫动力学","authors":"Sophie G. M. van Lange*,&nbsp;Riccardo Biella,&nbsp;Diane W. te Brake,&nbsp;Sinty Dol,&nbsp;Maarten Besten,&nbsp;Joris Sprakel,&nbsp;Santiago J. Garcia and Jasper van der Gucht*,&nbsp;","doi":"10.1021/acs.macromol.5c01318","DOIUrl":null,"url":null,"abstract":"<p >Polyelectrolytes with ionic domains screened by bulky hydrophobic segments form processable, hydrophobic complexes called “compleximers”. Ionic liquids, which are chemically similar, further plasticize compleximers, yet the mechanisms behind their plasticization effects and distribution within the complexes remain unclear. This study examines the relaxation dynamics of plasticized compleximers across multiple length scales using rheology, fluorescence recovery after photobleaching (FRAP), and broadband dielectric spectroscopy (BDS). The incorporation of ionic liquids into compleximers reduces their glass transition temperature (<i>T</i><sub>g</sub>), accelerates diffusive processes, increases segmental motion, and leads to a small decrease in activation energy associated with these relaxation processes. However, the activation energies vary substantially between techniques, probing different physical processes: approximately 200 kJ/mol in rheology, 50 kJ/mol in FRAP, and 90 kJ/mol in BDS. These variations suggest that collective dynamics strongly influence the compleximer rheology, making the mobilization (and activation) of polymer chains distinct from the local movement of ionic segments.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 14","pages":"7522–7533"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c01318","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Temperature-Dependent Relaxation Dynamics of Ionic Liquid-Plasticized Compleximers\",\"authors\":\"Sophie G. M. van Lange*,&nbsp;Riccardo Biella,&nbsp;Diane W. te Brake,&nbsp;Sinty Dol,&nbsp;Maarten Besten,&nbsp;Joris Sprakel,&nbsp;Santiago J. Garcia and Jasper van der Gucht*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c01318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyelectrolytes with ionic domains screened by bulky hydrophobic segments form processable, hydrophobic complexes called “compleximers”. Ionic liquids, which are chemically similar, further plasticize compleximers, yet the mechanisms behind their plasticization effects and distribution within the complexes remain unclear. This study examines the relaxation dynamics of plasticized compleximers across multiple length scales using rheology, fluorescence recovery after photobleaching (FRAP), and broadband dielectric spectroscopy (BDS). The incorporation of ionic liquids into compleximers reduces their glass transition temperature (<i>T</i><sub>g</sub>), accelerates diffusive processes, increases segmental motion, and leads to a small decrease in activation energy associated with these relaxation processes. However, the activation energies vary substantially between techniques, probing different physical processes: approximately 200 kJ/mol in rheology, 50 kJ/mol in FRAP, and 90 kJ/mol in BDS. These variations suggest that collective dynamics strongly influence the compleximer rheology, making the mobilization (and activation) of polymer chains distinct from the local movement of ionic segments.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 14\",\"pages\":\"7522–7533\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.macromol.5c01318\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01318\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01318","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

具有大体积疏水段筛选的离子域的聚电解质形成可加工的疏水络合物,称为“络合物”。离子液体化学性质相似,可进一步使络合物增塑化,但其增塑化作用及其在络合物中的分布机制尚不清楚。本研究利用流变学、光漂白后荧光恢复(FRAP)和宽带介电光谱(BDS)研究了塑化络合物在多个长度尺度上的弛豫动力学。离子液体掺入络合剂降低了它们的玻璃化转变温度(Tg),加速了扩散过程,增加了节段运动,并导致与这些弛豫过程相关的活化能小幅下降。然而,不同技术之间的活化能差异很大,探测不同的物理过程:流变学的活化能约为200 kJ/mol, FRAP的活化能约为50 kJ/mol, BDS的活化能约为90 kJ/mol。这些变化表明,集体动力学强烈影响络合物流变学,使聚合物链的动员(和激活)不同于离子段的局部运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the Temperature-Dependent Relaxation Dynamics of Ionic Liquid-Plasticized Compleximers

Polyelectrolytes with ionic domains screened by bulky hydrophobic segments form processable, hydrophobic complexes called “compleximers”. Ionic liquids, which are chemically similar, further plasticize compleximers, yet the mechanisms behind their plasticization effects and distribution within the complexes remain unclear. This study examines the relaxation dynamics of plasticized compleximers across multiple length scales using rheology, fluorescence recovery after photobleaching (FRAP), and broadband dielectric spectroscopy (BDS). The incorporation of ionic liquids into compleximers reduces their glass transition temperature (Tg), accelerates diffusive processes, increases segmental motion, and leads to a small decrease in activation energy associated with these relaxation processes. However, the activation energies vary substantially between techniques, probing different physical processes: approximately 200 kJ/mol in rheology, 50 kJ/mol in FRAP, and 90 kJ/mol in BDS. These variations suggest that collective dynamics strongly influence the compleximer rheology, making the mobilization (and activation) of polymer chains distinct from the local movement of ionic segments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信