两相流和环空流中压降和空隙率计算的力学预测模型

IF 3.3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
A.W. Mauro, A.F. Passarelli, F. Pelella, L. Viscito
{"title":"两相流和环空流中压降和空隙率计算的力学预测模型","authors":"A.W. Mauro,&nbsp;A.F. Passarelli,&nbsp;F. Pelella,&nbsp;L. Viscito","doi":"10.1016/j.expthermflusci.2025.111590","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a mechanistic model for predicting the pressure gradient and other relevant flow characteristics during annular two-phase flow, by introducing a novel physical interpretation of the enhancement of the friction factor at the vapor–liquid interface, as a function of the liquid to vapor core inertia forces ratio. This interpretation is demonstrated to be consistent with literature relating the interfacial friction factor to the equivalent sand roughness. An experimental database, consisting of 6377 annular flow data points, has been used to enlarge the range of operating conditions with mass velocities from 99 to 2000 kg m<sup>-2</sup>s<sup>−1</sup>, tube diameters from 0.5 to 14.0 mm, reduced pressures from 0.0363 to 0.6896 and frictional pressure drop values from 0.3 to 1332 kPa/m. The proposed method is able to predict pressure gradients with a mean absolute percentage error of 18 % and 83 % of data points falling within a ± 30 % error range. The method allows also the calculation of the void fraction with a good agreement with the Rouhani-Axelsson correlation.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"170 ","pages":"Article 111590"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanistic predictive model for pressure drop and void fraction calculation in two-phase flows and annular flow regime\",\"authors\":\"A.W. Mauro,&nbsp;A.F. Passarelli,&nbsp;F. Pelella,&nbsp;L. Viscito\",\"doi\":\"10.1016/j.expthermflusci.2025.111590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a mechanistic model for predicting the pressure gradient and other relevant flow characteristics during annular two-phase flow, by introducing a novel physical interpretation of the enhancement of the friction factor at the vapor–liquid interface, as a function of the liquid to vapor core inertia forces ratio. This interpretation is demonstrated to be consistent with literature relating the interfacial friction factor to the equivalent sand roughness. An experimental database, consisting of 6377 annular flow data points, has been used to enlarge the range of operating conditions with mass velocities from 99 to 2000 kg m<sup>-2</sup>s<sup>−1</sup>, tube diameters from 0.5 to 14.0 mm, reduced pressures from 0.0363 to 0.6896 and frictional pressure drop values from 0.3 to 1332 kPa/m. The proposed method is able to predict pressure gradients with a mean absolute percentage error of 18 % and 83 % of data points falling within a ± 30 % error range. The method allows also the calculation of the void fraction with a good agreement with the Rouhani-Axelsson correlation.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"170 \",\"pages\":\"Article 111590\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177725001840\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725001840","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个预测环空两相流压力梯度和其他相关流动特性的机制模型,通过引入一种新的物理解释来解释汽液界面摩擦系数的增强,作为液汽核心惯性力比的函数。这一解释被证明与有关界面摩擦系数与等效砂粗糙度的文献一致。利用由6377个环空流量数据点组成的实验数据库,扩大了质量速度从99到2000 kg m-2s−1,管径从0.5到14.0 mm,减压从0.0363到0.6896,摩擦压降从0.3到1332 kPa/m的操作条件范围。该方法能够预测压力梯度,平均绝对百分比误差为18%,83%的数据点误差在±30%的范围内。该方法还允许计算空隙率,与鲁哈尼-阿克塞尔松相关性很好地吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mechanistic predictive model for pressure drop and void fraction calculation in two-phase flows and annular flow regime
This paper presents a mechanistic model for predicting the pressure gradient and other relevant flow characteristics during annular two-phase flow, by introducing a novel physical interpretation of the enhancement of the friction factor at the vapor–liquid interface, as a function of the liquid to vapor core inertia forces ratio. This interpretation is demonstrated to be consistent with literature relating the interfacial friction factor to the equivalent sand roughness. An experimental database, consisting of 6377 annular flow data points, has been used to enlarge the range of operating conditions with mass velocities from 99 to 2000 kg m-2s−1, tube diameters from 0.5 to 14.0 mm, reduced pressures from 0.0363 to 0.6896 and frictional pressure drop values from 0.3 to 1332 kPa/m. The proposed method is able to predict pressure gradients with a mean absolute percentage error of 18 % and 83 % of data points falling within a ± 30 % error range. The method allows also the calculation of the void fraction with a good agreement with the Rouhani-Axelsson correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信