阴离子交换膜水电解槽中稳定金属-有机电催化剂的缺陷工程研究

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongbin Xu, Daniel J. Zheng, Shuo Wang, Ethan Yupeng Zheng, Yilin Zhang, Tongchao Liu, Junxiang Liu, Davide Menga, Junghwa Kim, Jen-Hung Fang, Xiao Wang, Zhen Zhang, Lena Schröck, Jiaqi Wang, Sungsik Lee, Sunmoon Yu, Haldrian Iriawan, Guanzhou Zhu, Yuriy Román-Leshkov*, Ju Li* and Yang Shao-Horn, 
{"title":"阴离子交换膜水电解槽中稳定金属-有机电催化剂的缺陷工程研究","authors":"Hongbin Xu,&nbsp;Daniel J. Zheng,&nbsp;Shuo Wang,&nbsp;Ethan Yupeng Zheng,&nbsp;Yilin Zhang,&nbsp;Tongchao Liu,&nbsp;Junxiang Liu,&nbsp;Davide Menga,&nbsp;Junghwa Kim,&nbsp;Jen-Hung Fang,&nbsp;Xiao Wang,&nbsp;Zhen Zhang,&nbsp;Lena Schröck,&nbsp;Jiaqi Wang,&nbsp;Sungsik Lee,&nbsp;Sunmoon Yu,&nbsp;Haldrian Iriawan,&nbsp;Guanzhou Zhu,&nbsp;Yuriy Román-Leshkov*,&nbsp;Ju Li* and Yang Shao-Horn,&nbsp;","doi":"10.1021/jacs.5c06156","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient and durable catalysts for the alkaline oxygen evolution reaction (OER) is vital to achieving practical anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production. Here, we break the activity–stability trade-off of electrocatalysis by defect engineering of Ni-based metal–organic electrocatalysts (Ni-benzenedicarboxylate; Ni-BDC) through coordinating ferrocenecarboxylates (Fc) to the metal sites. Experimental results collectively reveal that the defect MOF (Ni-BDC:Fc_5:1) exhibits a high OER turnover frequency of 0.75 O<sub>2</sub> s<sup>–1</sup> at 300 mV overpotential. Operando Raman spectroscopy and isotope-labeling electrochemical mass spectrometry measurements indicate the structure of Ni-BDC:Fc_5:1 is also more stable in service than that of pure Ni-BDC. The high activity and stability could be attributed to the moderate defects (i.e., unsaturated Ni sites) in the structure that not only increase the intrinsic activity and stability of the local active environment by inhibiting lattice oxygen exchange but also electrochemically activate the bulk of the catalysts by creating a porous network that facilitates internal H<sub>2</sub>O/OH<sup>–</sup> conduction with enhanced electronic conduction. Accordingly, an AEMWE employing Ni-BDC:Fc_5:1 as the OER catalyst delivers an industrial-level current density of 1 A cm<sup>–2</sup> at 1.73 V<sub>cell</sub> and can be steadily operated for more than 120 h.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 33","pages":"29838–29851"},"PeriodicalIF":15.6000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Metal–Organic Electrocatalysts for Anion-Exchange Membrane Water Electrolyzers by Defect Engineering\",\"authors\":\"Hongbin Xu,&nbsp;Daniel J. Zheng,&nbsp;Shuo Wang,&nbsp;Ethan Yupeng Zheng,&nbsp;Yilin Zhang,&nbsp;Tongchao Liu,&nbsp;Junxiang Liu,&nbsp;Davide Menga,&nbsp;Junghwa Kim,&nbsp;Jen-Hung Fang,&nbsp;Xiao Wang,&nbsp;Zhen Zhang,&nbsp;Lena Schröck,&nbsp;Jiaqi Wang,&nbsp;Sungsik Lee,&nbsp;Sunmoon Yu,&nbsp;Haldrian Iriawan,&nbsp;Guanzhou Zhu,&nbsp;Yuriy Román-Leshkov*,&nbsp;Ju Li* and Yang Shao-Horn,&nbsp;\",\"doi\":\"10.1021/jacs.5c06156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing efficient and durable catalysts for the alkaline oxygen evolution reaction (OER) is vital to achieving practical anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production. Here, we break the activity–stability trade-off of electrocatalysis by defect engineering of Ni-based metal–organic electrocatalysts (Ni-benzenedicarboxylate; Ni-BDC) through coordinating ferrocenecarboxylates (Fc) to the metal sites. Experimental results collectively reveal that the defect MOF (Ni-BDC:Fc_5:1) exhibits a high OER turnover frequency of 0.75 O<sub>2</sub> s<sup>–1</sup> at 300 mV overpotential. Operando Raman spectroscopy and isotope-labeling electrochemical mass spectrometry measurements indicate the structure of Ni-BDC:Fc_5:1 is also more stable in service than that of pure Ni-BDC. The high activity and stability could be attributed to the moderate defects (i.e., unsaturated Ni sites) in the structure that not only increase the intrinsic activity and stability of the local active environment by inhibiting lattice oxygen exchange but also electrochemically activate the bulk of the catalysts by creating a porous network that facilitates internal H<sub>2</sub>O/OH<sup>–</sup> conduction with enhanced electronic conduction. Accordingly, an AEMWE employing Ni-BDC:Fc_5:1 as the OER catalyst delivers an industrial-level current density of 1 A cm<sup>–2</sup> at 1.73 V<sub>cell</sub> and can be steadily operated for more than 120 h.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 33\",\"pages\":\"29838–29851\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c06156\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c06156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效耐用的碱性析氧反应(OER)催化剂是实现阴离子交换膜水电解槽(AEMWEs)绿色制氢的关键。本文通过镍基金属-有机电催化剂(苯二甲酸镍;Ni-BDC)通过二茂铁羧酸盐(Fc)配位到金属位点。实验结果表明,在300 mV过电位下,缺陷MOF (Ni-BDC:Fc_5:1)的OER转换频率高达0.75 O2 s-1。Operando拉曼光谱和同位素标记电化学质谱测量表明,Ni-BDC:Fc_5:1的结构也比纯Ni-BDC更稳定。高活性和稳定性可归因于结构中的适度缺陷(即不饱和Ni位点),这些缺陷不仅通过抑制晶格氧交换增加了局部活性环境的固有活性和稳定性,而且还通过创建多孔网络促进内部H2O/OH -传导和增强的电子传导来电化学激活大部分催化剂。因此,采用Ni-BDC:Fc_5:1作为OER催化剂的AEMWE在1.73 v电池下可提供1 A cm-2的工业级电流密度,并可稳定工作超过120小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable Metal–Organic Electrocatalysts for Anion-Exchange Membrane Water Electrolyzers by Defect Engineering

Stable Metal–Organic Electrocatalysts for Anion-Exchange Membrane Water Electrolyzers by Defect Engineering

Developing efficient and durable catalysts for the alkaline oxygen evolution reaction (OER) is vital to achieving practical anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production. Here, we break the activity–stability trade-off of electrocatalysis by defect engineering of Ni-based metal–organic electrocatalysts (Ni-benzenedicarboxylate; Ni-BDC) through coordinating ferrocenecarboxylates (Fc) to the metal sites. Experimental results collectively reveal that the defect MOF (Ni-BDC:Fc_5:1) exhibits a high OER turnover frequency of 0.75 O2 s–1 at 300 mV overpotential. Operando Raman spectroscopy and isotope-labeling electrochemical mass spectrometry measurements indicate the structure of Ni-BDC:Fc_5:1 is also more stable in service than that of pure Ni-BDC. The high activity and stability could be attributed to the moderate defects (i.e., unsaturated Ni sites) in the structure that not only increase the intrinsic activity and stability of the local active environment by inhibiting lattice oxygen exchange but also electrochemically activate the bulk of the catalysts by creating a porous network that facilitates internal H2O/OH conduction with enhanced electronic conduction. Accordingly, an AEMWE employing Ni-BDC:Fc_5:1 as the OER catalyst delivers an industrial-level current density of 1 A cm–2 at 1.73 Vcell and can be steadily operated for more than 120 h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信