Bin Hu,Xinhuan Niu,Jiakai Zhou,Changxin Dong,Chao He,Xinjie Li,Zheng Wu,Jiahui Li
{"title":"通过多尺度理论计算揭示化学机械抛光的微观机理。","authors":"Bin Hu,Xinhuan Niu,Jiakai Zhou,Changxin Dong,Chao He,Xinjie Li,Zheng Wu,Jiahui Li","doi":"10.1002/jcc.70213","DOIUrl":null,"url":null,"abstract":"Chemical mechanical polishing (CMP) is a critical planarization technique that combines chemical reactions and mechanical grinding. However, analyzing its underlying mechanisms at the microscopic level, particularly on the wafer surface, remains a significant challenge. This review focuses on the theoretical study of the micro-mechanism of CMP, and systematically reviews the application of quantum chemistry based on density functional theory (DFT) and molecular dynamics (MD) based on Newtonian mechanics (classical MD/reaction MD/ab initio MD) in the prediction of reaction activity and the analysis of interface behavior. DFT calculation can efficiently locate active sites and reveal the nature of bonding; MD simulation has realized the leap from adsorption configuration to reaction path, but it faces challenges such as limited time scale and high computational cost. So, the development of accurate force field for CMP complex solution environment, the combination of DFT calculation and MD simulation, and the application of machine learning MD will become the breakthrough points for CMP theoretical calculation. The deep integration of theoretical calculation and experiment will subvert the traditional trial-and-error research and development mode of CMP, and realize the whole process digital chain of \"molecular design -performance prediction - defect detection\" in computer software, which is expected to accelerate the green revolution in precision manufacturing fields such as semiconductors.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"1 1","pages":"e70213"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Microscopic Mechanisms of Chemical Mechanical Polishing via Multi-Scale Theoretical Calculations.\",\"authors\":\"Bin Hu,Xinhuan Niu,Jiakai Zhou,Changxin Dong,Chao He,Xinjie Li,Zheng Wu,Jiahui Li\",\"doi\":\"10.1002/jcc.70213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical mechanical polishing (CMP) is a critical planarization technique that combines chemical reactions and mechanical grinding. However, analyzing its underlying mechanisms at the microscopic level, particularly on the wafer surface, remains a significant challenge. This review focuses on the theoretical study of the micro-mechanism of CMP, and systematically reviews the application of quantum chemistry based on density functional theory (DFT) and molecular dynamics (MD) based on Newtonian mechanics (classical MD/reaction MD/ab initio MD) in the prediction of reaction activity and the analysis of interface behavior. DFT calculation can efficiently locate active sites and reveal the nature of bonding; MD simulation has realized the leap from adsorption configuration to reaction path, but it faces challenges such as limited time scale and high computational cost. So, the development of accurate force field for CMP complex solution environment, the combination of DFT calculation and MD simulation, and the application of machine learning MD will become the breakthrough points for CMP theoretical calculation. The deep integration of theoretical calculation and experiment will subvert the traditional trial-and-error research and development mode of CMP, and realize the whole process digital chain of \\\"molecular design -performance prediction - defect detection\\\" in computer software, which is expected to accelerate the green revolution in precision manufacturing fields such as semiconductors.\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"1 1\",\"pages\":\"e70213\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/jcc.70213\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.70213","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling Microscopic Mechanisms of Chemical Mechanical Polishing via Multi-Scale Theoretical Calculations.
Chemical mechanical polishing (CMP) is a critical planarization technique that combines chemical reactions and mechanical grinding. However, analyzing its underlying mechanisms at the microscopic level, particularly on the wafer surface, remains a significant challenge. This review focuses on the theoretical study of the micro-mechanism of CMP, and systematically reviews the application of quantum chemistry based on density functional theory (DFT) and molecular dynamics (MD) based on Newtonian mechanics (classical MD/reaction MD/ab initio MD) in the prediction of reaction activity and the analysis of interface behavior. DFT calculation can efficiently locate active sites and reveal the nature of bonding; MD simulation has realized the leap from adsorption configuration to reaction path, but it faces challenges such as limited time scale and high computational cost. So, the development of accurate force field for CMP complex solution environment, the combination of DFT calculation and MD simulation, and the application of machine learning MD will become the breakthrough points for CMP theoretical calculation. The deep integration of theoretical calculation and experiment will subvert the traditional trial-and-error research and development mode of CMP, and realize the whole process digital chain of "molecular design -performance prediction - defect detection" in computer software, which is expected to accelerate the green revolution in precision manufacturing fields such as semiconductors.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.