用于溶解有机物分析的单EEM快速分解。

IF 4.6
Xueqin Li, Zhenjie Zhou, Xiaoping Wang
{"title":"用于溶解有机物分析的单EEM快速分解。","authors":"Xueqin Li, Zhenjie Zhou, Xiaoping Wang","doi":"10.1016/j.saa.2025.126752","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence excitation-emission matrix (EEM) spectroscopy is a crucial analytical tool for characterizing dissolved organic matter in aquatic systems. The factorization of mixed spectral components within EEMs has long been the main subject of data interpretation, prompting widespread adoption of trilinear decomposition such as parallel factor analysis (PARAFAC). However, the requirements of multi-sample dataset and manual judgment pose limitations to PARAFAC analysis, particularly hindering the real-time and in-situ applications. This study introduces a rapid decomposition approach capable of automatically decomposing single EEM input into fluorescent components. The proposed approach, termed empirical initialization non-negative matrix factorization (EI-NMF), comprises three core steps: (1) chemical rank estimation via singular value decomposition (SVD), (2) empirical initialization based on statistical analysis, and (3) non-negative matrix factorization with multiplicative updates. Simulated data and natural water samples were used to verify the feasibility of proposed approach. Validation on simulated data yielded satisfactory results: EI-NMF achieved accurate chemical rank determination and component spectral recovery (Tucker congruence coefficients >0.9) relative to the true component spectra. Decomposition results of unseen natural samples further confirmed that EI-NMF can effectively processes single EEM inputs, yielding decomposition outcomes with excellent accuracy and chemical interpretability. This computationally efficient framework enables real-time decomposition of individual EEMs (processing time <0.1 s), offering significant potential for in situ monitoring of aquatic fluorescent components.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"345 ","pages":"126752"},"PeriodicalIF":4.6000,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid factorization of single EEM for dissolved organic matter analysis.\",\"authors\":\"Xueqin Li, Zhenjie Zhou, Xiaoping Wang\",\"doi\":\"10.1016/j.saa.2025.126752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence excitation-emission matrix (EEM) spectroscopy is a crucial analytical tool for characterizing dissolved organic matter in aquatic systems. The factorization of mixed spectral components within EEMs has long been the main subject of data interpretation, prompting widespread adoption of trilinear decomposition such as parallel factor analysis (PARAFAC). However, the requirements of multi-sample dataset and manual judgment pose limitations to PARAFAC analysis, particularly hindering the real-time and in-situ applications. This study introduces a rapid decomposition approach capable of automatically decomposing single EEM input into fluorescent components. The proposed approach, termed empirical initialization non-negative matrix factorization (EI-NMF), comprises three core steps: (1) chemical rank estimation via singular value decomposition (SVD), (2) empirical initialization based on statistical analysis, and (3) non-negative matrix factorization with multiplicative updates. Simulated data and natural water samples were used to verify the feasibility of proposed approach. Validation on simulated data yielded satisfactory results: EI-NMF achieved accurate chemical rank determination and component spectral recovery (Tucker congruence coefficients >0.9) relative to the true component spectra. Decomposition results of unseen natural samples further confirmed that EI-NMF can effectively processes single EEM inputs, yielding decomposition outcomes with excellent accuracy and chemical interpretability. This computationally efficient framework enables real-time decomposition of individual EEMs (processing time <0.1 s), offering significant potential for in situ monitoring of aquatic fluorescent components.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"345 \",\"pages\":\"126752\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2026-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2025.126752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.126752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

荧光激发发射矩阵(EEM)光谱是表征水生系统中溶解有机物的重要分析工具。eem中混合光谱成分的因子分解一直是数据解释的主要主题,促使三线性分解如平行因子分析(PARAFAC)被广泛采用。然而,对多样本数据集和人工判断的要求给PARAFAC分析带来了限制,特别是阻碍了实时和原位应用。本研究介绍了一种快速分解方法,能够自动将单个EEM输入分解为荧光组分。该方法被称为经验初始化非负矩阵分解(EI-NMF),包括三个核心步骤:(1)通过奇异值分解(SVD)进行化学秩估计,(2)基于统计分析的经验初始化,以及(3)通过乘法更新进行非负矩阵分解。利用模拟数据和天然水样验证了该方法的可行性。对模拟数据的验证获得了令人满意的结果:EI-NMF实现了准确的化学等级测定和相对于真实成分光谱的成分光谱恢复(Tucker同余系数>0.9)。未见过的天然样品的分解结果进一步证实了EI-NMF可以有效地处理单个EEM输入,产生具有优异准确性和化学可解释性的分解结果。这种计算效率高的框架能够实时分解各个eem(处理时间)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid factorization of single EEM for dissolved organic matter analysis.

Fluorescence excitation-emission matrix (EEM) spectroscopy is a crucial analytical tool for characterizing dissolved organic matter in aquatic systems. The factorization of mixed spectral components within EEMs has long been the main subject of data interpretation, prompting widespread adoption of trilinear decomposition such as parallel factor analysis (PARAFAC). However, the requirements of multi-sample dataset and manual judgment pose limitations to PARAFAC analysis, particularly hindering the real-time and in-situ applications. This study introduces a rapid decomposition approach capable of automatically decomposing single EEM input into fluorescent components. The proposed approach, termed empirical initialization non-negative matrix factorization (EI-NMF), comprises three core steps: (1) chemical rank estimation via singular value decomposition (SVD), (2) empirical initialization based on statistical analysis, and (3) non-negative matrix factorization with multiplicative updates. Simulated data and natural water samples were used to verify the feasibility of proposed approach. Validation on simulated data yielded satisfactory results: EI-NMF achieved accurate chemical rank determination and component spectral recovery (Tucker congruence coefficients >0.9) relative to the true component spectra. Decomposition results of unseen natural samples further confirmed that EI-NMF can effectively processes single EEM inputs, yielding decomposition outcomes with excellent accuracy and chemical interpretability. This computationally efficient framework enables real-time decomposition of individual EEMs (processing time <0.1 s), offering significant potential for in situ monitoring of aquatic fluorescent components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信