利用ELM和近红外光谱快速检测食品质量指标。

IF 4.6
Lei Shi, Yu Yang, Dandan Zhai, Peng Li
{"title":"利用ELM和近红外光谱快速检测食品质量指标。","authors":"Lei Shi, Yu Yang, Dandan Zhai, Peng Li","doi":"10.1016/j.saa.2025.126766","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve rapid, non-destructive detection of food quality indicators, this study introduces a novel method that combines near-infrared (NIR) spectroscopy with the Extreme learning machine (ELM) model. Eight spectral preprocessing methods and three wavelength selection algorithms were evaluated for predicting total ginsenoside content (TGC) and protein content (PC), along with a comparative analysis of the ELM model's performance against support vector regression and random forest. Results showed that Savitzky-Golay smoothing with standard normal variate was the best preprocessing method, K-means clustering provided the optimal wavelength selection algorithm, and the ELM model demonstrated the best performance. Specifically, the ELM based on K-means method achieved optimal results: R<sup>2</sup> of 0.9431, RMSE of 0.2933 mg/g, rRMSE of 0.0824, RPD of 4.2386, and P-time of 4 × 10<sup>-7</sup> s for TGC; and R<sup>2</sup> of 0.9764, RMSE of 4.1361 mg/g, rRMSE of 0.0337, RPD of 6.1295, and P-time of 2 × 10<sup>-7</sup> s for PC. In summary, combining NIR spectroscopy with the ELM model and clustering-based wavelength selection algorithm offers a reliable and practical solution for rapid, non-destructive, and accurate detection of food quality indicators.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"345 ","pages":"126766"},"PeriodicalIF":4.6000,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detection of food quality indicators using ELM and near-infrared spectroscopy.\",\"authors\":\"Lei Shi, Yu Yang, Dandan Zhai, Peng Li\",\"doi\":\"10.1016/j.saa.2025.126766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To achieve rapid, non-destructive detection of food quality indicators, this study introduces a novel method that combines near-infrared (NIR) spectroscopy with the Extreme learning machine (ELM) model. Eight spectral preprocessing methods and three wavelength selection algorithms were evaluated for predicting total ginsenoside content (TGC) and protein content (PC), along with a comparative analysis of the ELM model's performance against support vector regression and random forest. Results showed that Savitzky-Golay smoothing with standard normal variate was the best preprocessing method, K-means clustering provided the optimal wavelength selection algorithm, and the ELM model demonstrated the best performance. Specifically, the ELM based on K-means method achieved optimal results: R<sup>2</sup> of 0.9431, RMSE of 0.2933 mg/g, rRMSE of 0.0824, RPD of 4.2386, and P-time of 4 × 10<sup>-7</sup> s for TGC; and R<sup>2</sup> of 0.9764, RMSE of 4.1361 mg/g, rRMSE of 0.0337, RPD of 6.1295, and P-time of 2 × 10<sup>-7</sup> s for PC. In summary, combining NIR spectroscopy with the ELM model and clustering-based wavelength selection algorithm offers a reliable and practical solution for rapid, non-destructive, and accurate detection of food quality indicators.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"345 \",\"pages\":\"126766\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2026-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2025.126766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.126766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了实现食品质量指标的快速、无损检测,本研究引入了一种将近红外(NIR)光谱与极限学习机(ELM)模型相结合的新方法。研究了8种光谱预处理方法和3种波长选择算法对总人参皂苷含量(TGC)和蛋白质含量(PC)的预测效果,并比较了ELM模型对支持向量回归和随机森林的性能。结果表明,基于标准正态变量的Savitzky-Golay平滑是最佳的预处理方法,K-means聚类提供了最佳的波长选择算法,ELM模型表现出最好的性能。其中,基于K-means法的ELM得到了最优结果:R2为0.9431,RMSE为0.2933 mg/g, rRMSE为0.0824,RPD为4.2386,TGC的p时间为4 × 10-7 s;R2为0.9764,RMSE为4.1361 mg/g, rRMSE为0.0337,RPD为6.1295,P-time为2 × 10-7 s。综上所述,将近红外光谱与ELM模型和基于聚类的波长选择算法相结合,为快速、无损、准确检测食品质量指标提供了可靠、实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid detection of food quality indicators using ELM and near-infrared spectroscopy.

To achieve rapid, non-destructive detection of food quality indicators, this study introduces a novel method that combines near-infrared (NIR) spectroscopy with the Extreme learning machine (ELM) model. Eight spectral preprocessing methods and three wavelength selection algorithms were evaluated for predicting total ginsenoside content (TGC) and protein content (PC), along with a comparative analysis of the ELM model's performance against support vector regression and random forest. Results showed that Savitzky-Golay smoothing with standard normal variate was the best preprocessing method, K-means clustering provided the optimal wavelength selection algorithm, and the ELM model demonstrated the best performance. Specifically, the ELM based on K-means method achieved optimal results: R2 of 0.9431, RMSE of 0.2933 mg/g, rRMSE of 0.0824, RPD of 4.2386, and P-time of 4 × 10-7 s for TGC; and R2 of 0.9764, RMSE of 4.1361 mg/g, rRMSE of 0.0337, RPD of 6.1295, and P-time of 2 × 10-7 s for PC. In summary, combining NIR spectroscopy with the ELM model and clustering-based wavelength selection algorithm offers a reliable and practical solution for rapid, non-destructive, and accurate detection of food quality indicators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信