使用基于多级池的变压器模型和增强的Kolaskar & Tongaonkar的特征选择算法预测抗原性肽。

Ashwini S, Minu R I, Jeevan Kumar M
{"title":"使用基于多级池的变压器模型和增强的Kolaskar & Tongaonkar的特征选择算法预测抗原性肽。","authors":"Ashwini S, Minu R I, Jeevan Kumar M","doi":"10.1016/j.compbiolchem.2025.108615","DOIUrl":null,"url":null,"abstract":"<p><p>Antigenic peptide (AP) prediction is one of the most important roles in improve vaccine design and interpreting immune responses. This paper develops a Multi-Level Pooling-based Transformer (MLPT) model, which improves the accuracy and efficiency of predicting T-cell epitopes (TCEs). The model has utilized peptide sequences from the Immune Epitope Database (IEDB) and utilized a refined Kolaskar & Tongaonkar algorithm for feature extraction as well as a Self-Improved Black-winged Kite optimization algorithm to optimize the scoring matrix. The MLPT architecture takes the input features from the Adaptive Depthwise Multi-Kernel Atrous Module (ADMAM) as inputs to the Swin Transformer, and the output of Swin block 1 is concatenated with the features extracted from the Kolaskar-Tongaonkar algorithm with the SA-BWK model. This hierarchical integration enhances feature representation and predictive capability. Advanced feature extraction, coupled with optimized feature selection for the MLPT model improves its performance over the conventional approach in the identification of reduced-complexity antigenic determinants.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"120 Pt 1","pages":"108615"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting antigenic peptides using a multi-level pooling-based transformer model with enhanced Kolaskar & Tongaonkar's algorithm for feature selection.\",\"authors\":\"Ashwini S, Minu R I, Jeevan Kumar M\",\"doi\":\"10.1016/j.compbiolchem.2025.108615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antigenic peptide (AP) prediction is one of the most important roles in improve vaccine design and interpreting immune responses. This paper develops a Multi-Level Pooling-based Transformer (MLPT) model, which improves the accuracy and efficiency of predicting T-cell epitopes (TCEs). The model has utilized peptide sequences from the Immune Epitope Database (IEDB) and utilized a refined Kolaskar & Tongaonkar algorithm for feature extraction as well as a Self-Improved Black-winged Kite optimization algorithm to optimize the scoring matrix. The MLPT architecture takes the input features from the Adaptive Depthwise Multi-Kernel Atrous Module (ADMAM) as inputs to the Swin Transformer, and the output of Swin block 1 is concatenated with the features extracted from the Kolaskar-Tongaonkar algorithm with the SA-BWK model. This hierarchical integration enhances feature representation and predictive capability. Advanced feature extraction, coupled with optimized feature selection for the MLPT model improves its performance over the conventional approach in the identification of reduced-complexity antigenic determinants.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"120 Pt 1\",\"pages\":\"108615\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2025.108615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2025.108615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗原肽(AP)预测是改进疫苗设计和解释免疫反应的重要手段之一。为了提高t细胞表位(tce)预测的准确性和效率,提出了一种基于多级池的变压器(MLPT)模型。该模型利用免疫表位数据库(Immune Epitope Database, IEDB)中的肽序列,使用改进的Kolaskar & Tongaonkar算法进行特征提取,并使用自改进的黑翼风筝优化算法对评分矩阵进行优化。MLPT体系结构将自适应深度多核属性模块(ADMAM)的输入特征作为Swin Transformer的输入,Swin block 1的输出与从Kolaskar-Tongaonkar算法中提取的特征通过SA-BWK模型进行连接。这种分层集成增强了特征表示和预测能力。先进的特征提取与优化的特征选择相结合,使MLPT模型在识别低复杂度抗原决定因子方面的性能优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting antigenic peptides using a multi-level pooling-based transformer model with enhanced Kolaskar & Tongaonkar's algorithm for feature selection.

Antigenic peptide (AP) prediction is one of the most important roles in improve vaccine design and interpreting immune responses. This paper develops a Multi-Level Pooling-based Transformer (MLPT) model, which improves the accuracy and efficiency of predicting T-cell epitopes (TCEs). The model has utilized peptide sequences from the Immune Epitope Database (IEDB) and utilized a refined Kolaskar & Tongaonkar algorithm for feature extraction as well as a Self-Improved Black-winged Kite optimization algorithm to optimize the scoring matrix. The MLPT architecture takes the input features from the Adaptive Depthwise Multi-Kernel Atrous Module (ADMAM) as inputs to the Swin Transformer, and the output of Swin block 1 is concatenated with the features extracted from the Kolaskar-Tongaonkar algorithm with the SA-BWK model. This hierarchical integration enhances feature representation and predictive capability. Advanced feature extraction, coupled with optimized feature selection for the MLPT model improves its performance over the conventional approach in the identification of reduced-complexity antigenic determinants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信