Chunxiao Chang, Meng Wang, Jia Li, Sihao Qi, Xiaojuan Yu, Jun Xu, Shengbin Shi
{"title":"靶向NOTCH1-KEAP1轴通过调节NRF2的稳定延缓慢性肝损伤和肝癌进展。","authors":"Chunxiao Chang, Meng Wang, Jia Li, Sihao Qi, Xiaojuan Yu, Jun Xu, Shengbin Shi","doi":"10.1186/s13046-025-03488-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic liver injury is a key factor in diseases like hepatocellular carcinoma (HCC), steatohepatitis (NASH), and viral hepatitis type B and C (HBV, HCV). Understanding its molecular mechanisms is crucial for effective treatment. The NOTCH1 signaling pathway, though not fully understood, is implicated in liver injury and may be a potential therapeutic target.</p><p><strong>Methods: </strong>Clinical HCC, HBV, HCV and NASH samples and additional in vitro and in vivo performances were subjected to confirm the role of NOTCH1 and its downstream targets via a series of biochemical assays, molecular analysis approaches and targeted signaling pathway assay, etc. RESULTS: The present study first verified the abnormal elevation of NOTCH1 in hepatocytes from patients with steatohepatitis, HCC, HBV, HCV, and mouse models. Crucially, we discovered that hepatocyte-specific NOTCH1 knockout reduces hepatocellular damage in chronic liver inflammation and HCC mouse models, whereas adeno-associated virus serotype 8 (AAV8)-mediated NOTCH1 overexpression in hepatocytes exacerbates liver injury-related phenotype on-setting. Mechanistically, we showed that NOTCH1 has a new role in controlling ferroptosis and oxidative damage in hepatocytes. It interacts with Kelch-like ECH-associated protein 1 (KEAP1) and is directly recruited through its intracellular domain (NICD1). Additionally, the KEAP1 recruited by NOTCH1 impeded the binding stability of KEAP1-NFE2 like BZIP transcription factor 2 (Nrf2), promote the separation of KEAP1 and Nrf2, thereby reducing the stability of Nrf2 and hindering the ubiquitination-related proteasome degradation of Nrf2. Crucially, we also discovered that NOTCH1's ANK domain is essential for NICD1-KEAP1 contacts and signaling activation. The inability of NOTCH1 with ANK domain mutants (ΔANK) to connect with KEAP1 and increase its expression emphasizes the importance of the ANK domain in KEAP1-NRF2 signaling. By reversing the downregulation of KEAP1 and the overexpression of NRF2, ANK function is linked to ferroptosis and ROS buildup. ANK domain targeting may slow the course of HCC and liver damage.</p><p><strong>Conclusions: </strong>Targeting the NOTCH1-KEAP1-NRF2 axis as a possible chronic hepatic injury therapy is supported by these findings, which identify NOTCH1-KEAP1 as an NRF2 suppressor that accelerates the progression of liver injury.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"232"},"PeriodicalIF":12.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting NOTCH1-KEAP1 axis retards chronic liver injury and liver cancer progression via regulating stabilization of NRF2.\",\"authors\":\"Chunxiao Chang, Meng Wang, Jia Li, Sihao Qi, Xiaojuan Yu, Jun Xu, Shengbin Shi\",\"doi\":\"10.1186/s13046-025-03488-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic liver injury is a key factor in diseases like hepatocellular carcinoma (HCC), steatohepatitis (NASH), and viral hepatitis type B and C (HBV, HCV). Understanding its molecular mechanisms is crucial for effective treatment. The NOTCH1 signaling pathway, though not fully understood, is implicated in liver injury and may be a potential therapeutic target.</p><p><strong>Methods: </strong>Clinical HCC, HBV, HCV and NASH samples and additional in vitro and in vivo performances were subjected to confirm the role of NOTCH1 and its downstream targets via a series of biochemical assays, molecular analysis approaches and targeted signaling pathway assay, etc. RESULTS: The present study first verified the abnormal elevation of NOTCH1 in hepatocytes from patients with steatohepatitis, HCC, HBV, HCV, and mouse models. Crucially, we discovered that hepatocyte-specific NOTCH1 knockout reduces hepatocellular damage in chronic liver inflammation and HCC mouse models, whereas adeno-associated virus serotype 8 (AAV8)-mediated NOTCH1 overexpression in hepatocytes exacerbates liver injury-related phenotype on-setting. Mechanistically, we showed that NOTCH1 has a new role in controlling ferroptosis and oxidative damage in hepatocytes. It interacts with Kelch-like ECH-associated protein 1 (KEAP1) and is directly recruited through its intracellular domain (NICD1). Additionally, the KEAP1 recruited by NOTCH1 impeded the binding stability of KEAP1-NFE2 like BZIP transcription factor 2 (Nrf2), promote the separation of KEAP1 and Nrf2, thereby reducing the stability of Nrf2 and hindering the ubiquitination-related proteasome degradation of Nrf2. Crucially, we also discovered that NOTCH1's ANK domain is essential for NICD1-KEAP1 contacts and signaling activation. The inability of NOTCH1 with ANK domain mutants (ΔANK) to connect with KEAP1 and increase its expression emphasizes the importance of the ANK domain in KEAP1-NRF2 signaling. By reversing the downregulation of KEAP1 and the overexpression of NRF2, ANK function is linked to ferroptosis and ROS buildup. ANK domain targeting may slow the course of HCC and liver damage.</p><p><strong>Conclusions: </strong>Targeting the NOTCH1-KEAP1-NRF2 axis as a possible chronic hepatic injury therapy is supported by these findings, which identify NOTCH1-KEAP1 as an NRF2 suppressor that accelerates the progression of liver injury.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"44 1\",\"pages\":\"232\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-025-03488-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03488-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeting NOTCH1-KEAP1 axis retards chronic liver injury and liver cancer progression via regulating stabilization of NRF2.
Background: Chronic liver injury is a key factor in diseases like hepatocellular carcinoma (HCC), steatohepatitis (NASH), and viral hepatitis type B and C (HBV, HCV). Understanding its molecular mechanisms is crucial for effective treatment. The NOTCH1 signaling pathway, though not fully understood, is implicated in liver injury and may be a potential therapeutic target.
Methods: Clinical HCC, HBV, HCV and NASH samples and additional in vitro and in vivo performances were subjected to confirm the role of NOTCH1 and its downstream targets via a series of biochemical assays, molecular analysis approaches and targeted signaling pathway assay, etc. RESULTS: The present study first verified the abnormal elevation of NOTCH1 in hepatocytes from patients with steatohepatitis, HCC, HBV, HCV, and mouse models. Crucially, we discovered that hepatocyte-specific NOTCH1 knockout reduces hepatocellular damage in chronic liver inflammation and HCC mouse models, whereas adeno-associated virus serotype 8 (AAV8)-mediated NOTCH1 overexpression in hepatocytes exacerbates liver injury-related phenotype on-setting. Mechanistically, we showed that NOTCH1 has a new role in controlling ferroptosis and oxidative damage in hepatocytes. It interacts with Kelch-like ECH-associated protein 1 (KEAP1) and is directly recruited through its intracellular domain (NICD1). Additionally, the KEAP1 recruited by NOTCH1 impeded the binding stability of KEAP1-NFE2 like BZIP transcription factor 2 (Nrf2), promote the separation of KEAP1 and Nrf2, thereby reducing the stability of Nrf2 and hindering the ubiquitination-related proteasome degradation of Nrf2. Crucially, we also discovered that NOTCH1's ANK domain is essential for NICD1-KEAP1 contacts and signaling activation. The inability of NOTCH1 with ANK domain mutants (ΔANK) to connect with KEAP1 and increase its expression emphasizes the importance of the ANK domain in KEAP1-NRF2 signaling. By reversing the downregulation of KEAP1 and the overexpression of NRF2, ANK function is linked to ferroptosis and ROS buildup. ANK domain targeting may slow the course of HCC and liver damage.
Conclusions: Targeting the NOTCH1-KEAP1-NRF2 axis as a possible chronic hepatic injury therapy is supported by these findings, which identify NOTCH1-KEAP1 as an NRF2 suppressor that accelerates the progression of liver injury.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.