工程石墨烯负载的单原子催化剂高效氮还原为氨:第一性原理的研究。

IF 3 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Nahed H Teleb, Yasmeen G Abou El-Reash, Nuha Y Elamin, Mahmoud A S Sakr, Mohamed A Saad, Hazem Abdelsalam
{"title":"工程石墨烯负载的单原子催化剂高效氮还原为氨:第一性原理的研究。","authors":"Nahed H Teleb, Yasmeen G Abou El-Reash, Nuha Y Elamin, Mahmoud A S Sakr, Mohamed A Saad, Hazem Abdelsalam","doi":"10.1016/j.jmgm.2025.109136","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical nitrogen reduction reaction (N<sub>2</sub>RR) offers a sustainable route to ammonia production under ambient conditions but remains limited by inert N ≡ N bond activation and competitive hydrogen evolution reaction (HER). Herein, we employ first-principles density functional theory (DFT) to systematically investigate the N<sub>2</sub>RR activity of graphyne (GY) doped with single-atom transition metals (Fe, Mo, Ru, W). Structural analysis reveals strong binding and minimal distortion of the TM dopants on the porous, π-conjugated GY scaffold, with Fe-GY and W-GY exhibiting the highest stability. TM doping induces substantial bandgap narrowing and introduces localized d-orbital states near the Fermi level, enhancing charge transfer and catalytic potential. Adsorption studies show that TM sites effectively activate N<sub>2</sub> via π-backdonation, with W-GY inducing the greatest N ≡ N bond elongation. Free energy profiles demonstrate that TM-GY catalysts significantly lower the limiting potential for N<sub>2</sub>RR compared to pristine GY, with Fe-Gy and W-GY achieving the most favorable limiting potential via the alternating mechanism. HER analysis reveals Ru-GY possesses near-optimal hydrogen adsorption energy (ΔG<sub>H</sub> = -0.25 eV), suggesting high activity but possible competition with N<sub>2</sub>RR. In contrast, Mo-GY and W-GY exhibit stronger H binding, potentially suppressing HER and improving N<sub>2</sub>RR selectivity. This work identifies TM-doped GY as a versatile platform for single-atom catalysis and offers design principles for optimizing selectivity and efficiency in electrochemical nitrogen fixation.</p>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"140 ","pages":"109136"},"PeriodicalIF":3.0000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering graphyne-supported single-atom catalysts for efficient nitrogen reduction to ammonia: First-principles investigation.\",\"authors\":\"Nahed H Teleb, Yasmeen G Abou El-Reash, Nuha Y Elamin, Mahmoud A S Sakr, Mohamed A Saad, Hazem Abdelsalam\",\"doi\":\"10.1016/j.jmgm.2025.109136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical nitrogen reduction reaction (N<sub>2</sub>RR) offers a sustainable route to ammonia production under ambient conditions but remains limited by inert N ≡ N bond activation and competitive hydrogen evolution reaction (HER). Herein, we employ first-principles density functional theory (DFT) to systematically investigate the N<sub>2</sub>RR activity of graphyne (GY) doped with single-atom transition metals (Fe, Mo, Ru, W). Structural analysis reveals strong binding and minimal distortion of the TM dopants on the porous, π-conjugated GY scaffold, with Fe-GY and W-GY exhibiting the highest stability. TM doping induces substantial bandgap narrowing and introduces localized d-orbital states near the Fermi level, enhancing charge transfer and catalytic potential. Adsorption studies show that TM sites effectively activate N<sub>2</sub> via π-backdonation, with W-GY inducing the greatest N ≡ N bond elongation. Free energy profiles demonstrate that TM-GY catalysts significantly lower the limiting potential for N<sub>2</sub>RR compared to pristine GY, with Fe-Gy and W-GY achieving the most favorable limiting potential via the alternating mechanism. HER analysis reveals Ru-GY possesses near-optimal hydrogen adsorption energy (ΔG<sub>H</sub> = -0.25 eV), suggesting high activity but possible competition with N<sub>2</sub>RR. In contrast, Mo-GY and W-GY exhibit stronger H binding, potentially suppressing HER and improving N<sub>2</sub>RR selectivity. This work identifies TM-doped GY as a versatile platform for single-atom catalysis and offers design principles for optimizing selectivity and efficiency in electrochemical nitrogen fixation.</p>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"140 \",\"pages\":\"109136\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmgm.2025.109136\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmgm.2025.109136","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

电化学氮还原反应(N2RR)为环境条件下的氨生产提供了一条可持续的途径,但仍然受到惰性N≡N键激活和竞争性析氢反应(HER)的限制。本文采用第一性原理密度泛函理论(DFT)系统地研究了掺杂单原子过渡金属(Fe, Mo, Ru, W)的石墨炔(GY)的N2RR活性。结构分析表明,TM掺杂剂在多孔π共轭GY支架上的结合强,变形小,其中Fe-GY和W-GY的稳定性最高。TM掺杂导致带隙大幅缩小,并在费米能级附近引入局域d轨道态,增强了电荷转移和催化电位。吸附研究表明,TM位点通过π-反捐赠有效激活N2, W-GY诱导最大的N≡N键伸长。自由能谱表明,TM-GY催化剂的N2RR极限势明显低于原始GY,其中Fe-Gy和W-GY通过交替机制达到了最有利的极限势。HER分析显示Ru-GY具有接近最佳的氢吸附能(ΔGH = -0.25 eV),表明其活性较高,但可能与N2RR竞争。相比之下,Mo-GY和W-GY表现出更强的H结合,可能抑制HER并提高N2RR选择性。这项工作确定了tm掺杂GY作为单原子催化的通用平台,并为优化电化学固氮的选择性和效率提供了设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering graphyne-supported single-atom catalysts for efficient nitrogen reduction to ammonia: First-principles investigation.

The electrochemical nitrogen reduction reaction (N2RR) offers a sustainable route to ammonia production under ambient conditions but remains limited by inert N ≡ N bond activation and competitive hydrogen evolution reaction (HER). Herein, we employ first-principles density functional theory (DFT) to systematically investigate the N2RR activity of graphyne (GY) doped with single-atom transition metals (Fe, Mo, Ru, W). Structural analysis reveals strong binding and minimal distortion of the TM dopants on the porous, π-conjugated GY scaffold, with Fe-GY and W-GY exhibiting the highest stability. TM doping induces substantial bandgap narrowing and introduces localized d-orbital states near the Fermi level, enhancing charge transfer and catalytic potential. Adsorption studies show that TM sites effectively activate N2 via π-backdonation, with W-GY inducing the greatest N ≡ N bond elongation. Free energy profiles demonstrate that TM-GY catalysts significantly lower the limiting potential for N2RR compared to pristine GY, with Fe-Gy and W-GY achieving the most favorable limiting potential via the alternating mechanism. HER analysis reveals Ru-GY possesses near-optimal hydrogen adsorption energy (ΔGH = -0.25 eV), suggesting high activity but possible competition with N2RR. In contrast, Mo-GY and W-GY exhibit stronger H binding, potentially suppressing HER and improving N2RR selectivity. This work identifies TM-doped GY as a versatile platform for single-atom catalysis and offers design principles for optimizing selectivity and efficiency in electrochemical nitrogen fixation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信