方格上进化信任博弈中的角色间互惠性。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-08-01 DOI:10.1063/5.0285064
Chaoqian Wang, Wei Zhang, Xinwei Wang, Attila Szolnoki
{"title":"方格上进化信任博弈中的角色间互惠性。","authors":"Chaoqian Wang, Wei Zhang, Xinwei Wang, Attila Szolnoki","doi":"10.1063/5.0285064","DOIUrl":null,"url":null,"abstract":"<p><p>Simulating bipartite games, such as the trust game, is not straightforward due to the lack of a natural way to distinguish roles in a single population. The square lattice topology can provide a simple yet elegant solution by alternating trustors and trustees. For even lattice sizes, it creates two disjoint diagonal sub-lattices for strategy learning, while game interactions can take place on the original lattice. This setup ensures a minimal spatial structure that allows interactions across roles and learning within roles. By simulations on this setup, we detect an inter-role spatial reciprocity mechanism, through which trust can emerge. In particular, a moderate return ratio allows investing trustors and trustworthy trustees to form inter-role clusters and thus save trust. If the return is too high, it harms the survival of trustees; if too low, it harms trustors. The proposed simulation framework is also applicable to any bipartite game to uncover potential inter-role spatial mechanisms across various scenarios.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-role reciprocity in evolutionary trust game on square lattices.\",\"authors\":\"Chaoqian Wang, Wei Zhang, Xinwei Wang, Attila Szolnoki\",\"doi\":\"10.1063/5.0285064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulating bipartite games, such as the trust game, is not straightforward due to the lack of a natural way to distinguish roles in a single population. The square lattice topology can provide a simple yet elegant solution by alternating trustors and trustees. For even lattice sizes, it creates two disjoint diagonal sub-lattices for strategy learning, while game interactions can take place on the original lattice. This setup ensures a minimal spatial structure that allows interactions across roles and learning within roles. By simulations on this setup, we detect an inter-role spatial reciprocity mechanism, through which trust can emerge. In particular, a moderate return ratio allows investing trustors and trustworthy trustees to form inter-role clusters and thus save trust. If the return is too high, it harms the survival of trustees; if too low, it harms trustors. The proposed simulation framework is also applicable to any bipartite game to uncover potential inter-role spatial mechanisms across various scenarios.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0285064\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0285064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

模拟双方博弈,如信任博弈,并不简单,因为缺乏一种自然的方法来区分单一群体中的角色。方形点阵拓扑可以通过交替托管方和托管方提供简单而优雅的解决方案。对于偶数晶格大小,它创建两个不相交的对角线子晶格用于策略学习,而博弈交互可以在原始晶格上进行。这种设置确保了最小的空间结构,允许角色之间的交互和角色内部的学习。通过对这一设置的模拟,我们发现了角色间空间互惠机制,通过这种机制可以产生信任。特别是适度的回报率可以使投资委托人和可信受托人形成角色间集群,从而节省信任。如果回报过高,就会损害受托人的生存;如果过低,则会损害委托人的利益。所提出的模拟框架也适用于任何两方博弈,以揭示各种场景中潜在的角色间空间机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-role reciprocity in evolutionary trust game on square lattices.

Simulating bipartite games, such as the trust game, is not straightforward due to the lack of a natural way to distinguish roles in a single population. The square lattice topology can provide a simple yet elegant solution by alternating trustors and trustees. For even lattice sizes, it creates two disjoint diagonal sub-lattices for strategy learning, while game interactions can take place on the original lattice. This setup ensures a minimal spatial structure that allows interactions across roles and learning within roles. By simulations on this setup, we detect an inter-role spatial reciprocity mechanism, through which trust can emerge. In particular, a moderate return ratio allows investing trustors and trustworthy trustees to form inter-role clusters and thus save trust. If the return is too high, it harms the survival of trustees; if too low, it harms trustors. The proposed simulation framework is also applicable to any bipartite game to uncover potential inter-role spatial mechanisms across various scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信